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Preface

Business intelligence (BI) is a key driver in the business world today. We are now 
deep into the information age, and things have changed dramatically. It has long 
been said that information is power, and we can now understand that statement 
ever more clearly. 

Business is moving at a much faster pace. Management is looking for answers to 
their questions, and they need these answers much more quickly. Time is money, 
and real-time information is fast becoming a requirement. These directions, 
movement, and initiatives force major changes in all the business processes, and 
have put a sharper focus on the whole area of data management. 

To support all this requires integrated, accurate, current, and understandable 
sources of data that can be accessed very quickly, transformed to information, 
and used for decision-making. Do you have the data infrastructure in place to 
support those requirements? There can be a good number of components 
involved, such as:

� A well-architected data environment
� Access to, and integration of, heterogeneous data sources
� Data warehousing to accumulate, organize, and store the data
� Business processes to support the data flow
� Data federation for heterogeneous data sources
� Dashboarding for proactive process management
� Analytic applications for dynamic problem recognition and resolution

It should be quite clear that data is the enabler. And the first point in the above list 
is about having a good data architecture. What would you say is the cornerstore 
building block for creating such an architecture? You are correct! It is the data 
model. Everything emanates from the data model. More precisely, in a data 
warehousing and business intelligence environment, the dimensional model. 
Therefore, the subject of this IBM® Redbook.

Are you ready for these changes? Planning for them? Already started? Get 
yourself positioned for success, set goals, and quickly move to reach them.

Need help? That is one of the objectives of this IBM Redbook. Read on.
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Chapter 1. Introduction

Within the scope of business computing and information technology (IT), it has 
been said that the 1980s were about performing your business, the 1990s were 
about analyzing your business, and the late 1990s and beyond are about new 
routes to market and bringing your business to the World Wide Web. To build 
further upon these categorizations, we offer the following points:

� Performing your business

– Online Transaction Processing (OLTP) was the supporting technology.

– Companies could increase net revenue by:

• Lowering cost of sales through computerized automation, and less 
intensive labor. The internal cost and percent of (human) labor is 
lowered.

• Better utilization of (capital) inventory, and increased visibility of on 
hand inventory. A customer new order call center can view and sell 
products from numerous and remote company-owned distribution 
centers.

• Faster turnaround on order processing, faster order assembly and 
shipment, and faster bill generation and collection. The number of days 
outstanding, an important accounting metric, is lowered.

– Companies could grow in size beyond previously known limits.

– OLTP data is modeled using Entity Relationship (E/R) modeling, 
sometimes referred to as Third Normal Form (3NF).

1
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– Why business or IT cares: OLTP business systems are designed and 
delivered to support the business and operational goals. While IT is a cost 
center, IT support systems deliver cost savings on operational activities.

� Analyzing your business

– Business Intelligence (BI) systems provide the information that 
management needs to make good business decisions.

– Increase company net revenue and decrease operating margins (internal 
cost) by:

• Lowering customer service. BI aids in identifying high value customers, 
delivering customer reward programs, and identifying causes of 
customer loss through data analysis.

• Analysis of markets (product and customer demographic data) enables 
more efficient application of (target) marketing programs. BI systems 
support increases in market share by enabling better understanding 
and execution of the business plan to enable increased sales.

• Better operational efficiencies through better understanding of 
operational data.

– Allows companies to compete with the most efficient operating margins.

– BI data is modeled using a small amount of E/R (Entity/Relationship), such 
as OLTP systems, but a larger percentage of businesses uses 
dimensional modeling.

– Why business or IT cares: At this point in history, most companies are 
expected to deliver and execute competent OLTP/operational type 
systems for efficiency. However, BI systems, when executed properly, can 
improve their effectiveness and offer a distinct and strategic competitive 
advantage. While technically still a cost center, IT moves more into the 
strategic side of business planning and execution. IT is now, or should be, 
viewed as moving from simply being necessary for operations to being a 
strategic requirement for success.

� Bringing your business to the World Wide Web

– While OLTP and BI are types, or categorizations, of business application 
systems, the Web is a standard computing platform. OLTP and BI 
systems could be delivered via the Web, two-tier client/server systems, or 
possibly even simple ASCII (green screen) terminals. In this context, the 
Web is merely a delivery platform for OLTP and BI systems.

– You can increase company gross revenue and net revenue by the 
following, for example:

• Allow for new routes to market (new sales channels). For example, a 
local retailer can offer to sell products nationally and even 
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internationally via their commercial Web site. Larger and global 
markets offer the opportunity to increase sales revenue.

• Customers can self-service their account through a Web site or Web 
Portal, make inquiries, and place, manage and track orders at any time 
of day they choose. Customer self-service lowers the cost of sales. The 
ability for customer self-service at the time of their choosing raises 
customer satisfaction and lowers customer churn.

• Shared inventory visibility between retailer and manufacturer (extranet 
application) lowers cost of sales, and can lower, or even eliminate, 
inventory levels. A customer new order call center, or Web-based retail 
site, can sell and deliver products from numerous and remote 
manufacturer-maintained distribution centers.

– Allow companies to sell and compete globally, and at lower costs.

– While the Web is a standard computing platform, meaning standard 
communication protocols, there are a few (at least) standard computing 
infrastructure platform choices. Microsoft’s [dot].Net and the open source 
Java/J2EE are two examples. This IBM Redbook gives attention and 
preference to open source, cooperative computing, implying Java/J2EE™. 

– Why business or IT cares: IT can become a profit center. That is, it can 
become the virtual, automated sales agent, or customer self-service 
agent. OLTP and BI systems are delivered remotely or via the Web, and 
should be designed and constructed to leverage this and future platforms.

This is not to say that these categorizations imply an ending to one and 
beginning of another. They are all ongoing and in a constant state of 
improvement. For example, BI is all about analyzing your business. And, it is still 
not a mature category. The fact that we are now in the process of bringing 
business to the Web does not mean we have finished with data analysis and 
performing our business. It is just a continuation of the evolution of business 
computing and information technology.
 Chapter 1. Introduction 3



1.1  Scope of this redbook
Business intelligence (BI) environments are changing, and quite dramatically. BI 
is basically comprised of a data warehousing infrastructure, and a query, 
analysis, and reporting environment. In this redbook, we focus on the data 
warehousing infrastructure, but primarily a specific element of it termed the data 
model. Or, more precisely in a data warehousing and business intelligence 
environment, the dimensional model. We consider this the base building block of 
the data warehouse. The focus then is on the data model. Or, more precisely, the 
topic of data modeling and its impact on the business and business applications.

We discuss data modeling techniques and how to use them to develop flexible 
and highly performant data models. We refer to the two primary techniques 
businesses use, as EAR or E/R (Entity Attribute Relationship or sometimes as 
simply Entity Relationship) data modeling and dimensional modeling.

In this redbook, we take a specific focus on dimensional modeling. There is a 
detailed overview of dimensional modeling, along with examples to aid in 
understanding. We also provide best practices for implementing and maintaining 
a dimensional model, for converting existing data models, and for combining 
multiple models.

Acknowledgement
Before proceeding, we would like to acknowledge Dr. Ralph Kimball for his work 
in data warehousing and dimensional data modeling. He is well known in the 
industry, is a leading proponent of the technology, and is generally acknowledged 
to be the originator of many of the core concepts in this subject area. When you 
think of subjects such as data warehousing, data marts, and dimensional 
modeling, one of the first names that comes to mind is Dr. Kimball. He has 
written extensively about these and related subjects, and provides education and 
consulting offerings to help clients as they design, develop, and implement their 
data warehousing environments. We have listed a few of his publications about 
dimensional modeling and data warehousing, published by John Wiley & Sons, 
in “Related publications” on page 637. We consider these to be required reading 
for anyone who is interested in, and particularly for those who are implementing, 
data warehousing.

Objective
Once again, the objective is not to make this redbook a treatise on dimensional 
modeling techniques, but to focus at a more practical level. That is to relate the 
implementation and maintenance of a dimensional model to business 
intelligence. The primary purpose of business intelligence is to provide answers 
to your business questions, and that requires a robust data warehousing 
infrastructure to house your data and information objects. But, it also requires a 
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query, analysis, and reporting environment to get the information out of the data 
warehouse and to the users. And to get it to those users of the system with 
acceptable performance. 

We also provide a discussion of three current business intelligence initiatives, 
which are business performance management, real-time business intelligence, 
and data mart consolidation. These are all initiatives that can help you meet your 
business goals and objectives, as well as your performance measurements. For 
more detailed information about these specific initiatives, refer to the following 
IBM Redbooks:

� Business Performance Management...Meets Business Intelligence, 
SG24-6340

� Preparing for DB2 Near-Realtime Business Intelligence, SG24-6071

� Data Mart Consolidation: Getting Control of Your Enterprise Information, 
SG24-6653

To get these, and other IBM Redbooks, see “How to get IBM Redbooks” on 
page 638.

Programming and the data model
This IBM Redbook also has a focus on business application programming. More 
specifically, we dedicated it to business application programming for business 
intelligence systems, including such elements as data marts, data warehouses, 
and operational data stores, and related technologies using relational database 
servers that utilize industry standard Structured Query Language (SQL).

In general, there is systems programming and there is business application 
programming. Systems programming involves creating the next great operating 
system, spreadsheet, or word processor. Business application programming 
would involve creating such things as an employee time and attendance system, 
a customer new order entry system, a market productivity analysis and reporting 
system, or something similar. While both systems programming and business 
application programming make use of data modeling, systems programming 
does so sparingly. Systems programming is typically more about algorithms, 
program function, the user interface, and other similar things. Systems 
programming uses data modeling merely as a means to accomplish its task, 
which is to deliver such things as word processing functionality or a spreadsheet 
program. Business application programming is typically all about processing 
data, and is almost entirely dependent on data modeling. Regardless of the 
architecture, a business application systems always sits on top of a persistent 
data model of some type.
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1.2  What this redbook includes
It seems that the informational technology industry is always chasing the next 
great thing. At this time, the current next great thing seems to be 
service-oriented architecture (SOA); a specific subtopic or sub-capability within a 
Web-based architecture. So why do we want to provide a new publication on 
business intelligence and dimensional modeling? Well, consider the following:

� We focus specifically on the combined topics of dimensional modeling and 
business intelligence. This redbook is not intended to be an academic 
treatise, but a practical guide for implementing dimensional models oriented 
specifically to business intelligence systems.

� Business intelligence is a strategic type of information technology that can 
deliver a significant contribution to the net and operating revenues of a 
company. While the Web and initiatives such as SOA are in high demand, 
they are merely the architectures with which business intelligence may be 
delivered.

� This redbook is a strategic and comprehensive dimensional modeling 
publication.

� We included best practices, as well as specific procedures to deliver systems 
of this type more quickly, and with measurable and increased success rates.

� Because we want to see you succeed, and we believe this redbook has 
information that can help you do that.

Further, this IBM Redbook includes:

� Detailed discussion of a dimensional model life cycle (DMDL). This was 
developed to help you create functional and highly performant dimensional 
models for your BI environment.

� An extensive case study about developing a dimensional model by following 
the processes and steps in the DMDL.

� A detailed analysis of an existing sample dimensional model, along with a 
discussion of techniques that you can use to improve it.

� Practical and understandable examples. We present business intelligence 
concepts by using examples taken from the business environment.

� Application of current, practical technologies. We present examples that are 
demonstrated using technology in currently available software products, 
where applicable.

� A common base of knowledge. We assume that you are already familiar with 
information technology, and even online transaction processing (OLTP). This 
IBM Redbook bridges the transformation and delivery of OLTP systems data 
into business intelligence.
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1.3  Data modeling and business intelligence
We have discussed the evolution of information technology, and the directions it 
has taken over the years. It has served many needs, and particularly those 
associated with business intelligence. It is, after all, information that enables 
business intelligence. And if we continue looking at the information structure, we 
see that at the base level there is data. That data is collected from many sources 
and integrated with technology to enhance its usefulness and meaning. 

However, to finish our investigations, we must go to one more level. That is the 
level that defines and maintains the structure of the data, and is the key enabler 
of the usefulness of the data. That level is the data model. 

While there are many technologies, techniques, and design patterns, presented 
in the pages and chapters that follow, this section demonstrates, by example, a 
single and simple online transaction processing (OLTP) business application 
system that is then migrated to a business intelligence (BI) system.

1.3.1  SQL, OLTP, and E/R modeling
Structured Query Language (SQL) is a data access command and control 
language associated exclusively with relational databases. Databases are simply 
sizeable collections of related data; such as facts, transactions, names, dates, 
and places. Relational databases are those databases of a given operational 
style or design pattern. As computer software languages go, SQL is best referred 
to as a declarative language. Declarative languages declare; they tell some 
other entity what to do without telling them how to do it. Hyper Text Markup 
Language (HTML) is another declarative computer software language. HTML 
tells the Web browser what the markup instructions are, but it is the Web browser 
that determines how to render the given text. For example, HTML may request a 
bold emphasis on a text string, but the Web browser determines that a given 
installation desires a heavyweight character font and 12 point type face when 
bold is requested. SQL is the command language to read, write, and define the 
data structures that reside within a database.

The technology for relational database was unveiled in 1970 in a publication by 
IBM researcher, E.F. Codd. However, it was not until the early to mid-1980s that 
relational databases began to prove their commercial viability. At that time, 
independent software vendors, such as Informix Software (originally named 
Relational Database Systems), Oracle® Software (originally named Relational 
Database Technologies), and Ingres Software began shipping software systems 
that would serve data via receipt and processing of SQL commands. A business 
application program handled the user interface. Both keyboard input and terminal 
output execute some amount of business logic, but then rely on the database 
server to read and write data to a shared repository, the relational database.
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A project plan to develop an E/R data model
Rather than project plan, perhaps it would be better to say we are reviewing the 
software development life cycle in which an online transaction processing 
business application system is developed using E/R data modeling. A few more 
points to consider here:

� As a phrase, software development life cycle represents an abstract concept, 
a life cycle.

� The Waterfall Method is one implementation of an SDLC. In a Waterfall 
Method SDLC, there are generally five to seven development and analysis 
stages through which you create business application software. Figure 1-1 on 
page 9 displays a Waterfall Method.

– Stage 1 of Figure 1-1 on page 9 is entitled discovery. During this phase, 
you determine the requirements of the business application. For an OLTP 
business application system, this includes gathering the layouts of all 
printed reports and specific data to be collected during data entry.

– Stage 2 of Figure 1-1 on page 9 is entitled data model. During this phase, 
you create the data model. How you create an entity relationship (E/R) 
data model, and, more specifically, how you create a dimensional model, 
is the topic of this IBM Redbook.

– There is a very specific and intentional dashed line drawn between Stage 
2, and the remaining stages of this Waterfall Method SDLC. Stage 2 is 
normally completed by a data modeler,  where Stages 3, 4, and 5 are 
normally performed by programmers and programmer management. This 
can raise numerous project management and performance issues, which 
we address throughout this redbook.

� OLTP is a type, or categorization, of a business application, and generally has 
the following characteristics:

– Data reads (SQL SELECT statements) return very few data records, 
generally in the range of five to one hundred and certainly fewer than 
hundreds or thousands of records.

– The filter criteria for a given SQL SELECT is generally well known in 
advance of execution; such as to return a customer order by order 
number, report revenue by company division, and then by product stock 
keeping identifier.

– The database and database server run-time environments are easily 
optimized for this workload.
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Figure 1-1   Example of Waterfall Method, Software Development Life Cycle

Project plan issues 
A number of problems display themselves in a typical project plan, as shown in 
Figure 1-1. The issues include:

� The people who gather all of the application expertise and business 
knowledge to create the data model, are not the same people who author the 
programming to access this data model. Optimizations and efficiencies would 
be gained if the software development life cycle being employed somehow 
encouraged this knowledge to propagate from the data modeling phase to the 
programming and testing phases.

� The application programmers are those people best enabled to find missing 
columns and other errors in the data model as they begin and then complete 
their work. This can create a cycle of dependency, and then greater errors as 
the programmers rely on the modelers to make changes, which then often 
introduces errors in other application programs which had already been 
completed.

� In the system test phase, further errors are uncovered, as it becomes known 
that the programmers misinterpreted the large data model, incorrectly joining 
tables, and other similar activities.

� Often the first migration of data from the existing system to the new system 
occurs in whole only towards the end of the project. This leads to discovery of 
errors in the data model, missing attributes, or incorrect data type mappings.
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� And then last, but certainly not all inclusive, application performance too is 
one of the last elements to be tested following data migration from the 
existing system.

In addition to data modeling for business intelligence, the redbook addresses the 
process of data modeling, not only as a standalone topic, but as a topic to be 
integrated into a software development life cycle.

An example OLTP business system with E/R data model
Figure 1-2 on page 12 displays an OLTP data model. Again, an OLTP data model 
is a bit of a misnomer; it is actually a style or categorization of business 
application system. OLTP systems are almost exclusively associated with E/R 
data modeling. As a means to detail dimensional (data) modeling, which is 
associated with BI business application systems, both E/R modeling and 
dimensional modeling are detailed in the redbook. For now, see the following:

� As shown in Figure 1-2 on page 12, E/R data models tend to cascade; 
meaning one table flows to the next, picking up volume as it goes down the 
data hierarchy. A customer places one or more orders, and an order has one 
or more order line items. A single customer could have purchased hundreds 
of order line items, as brokered through the dozens of orders placed.

� From the example in Figure 1-2 on page 12, a printed copy of a Customer 
Order would have to extract (assemble) data from the Customer table, the 
Customer Order table, the Order Line Item table, and perhaps others. E/R 
data models optimize for writing, and as a result have little or no data 
redundancy. The customer contact data, a single record in the customer 
table, is listed in one location. If this customer contact data is needed to print 
a given customer order, data must be read from both the Customer table and 
Customer Order (and perhaps even Order Line Item) table.

� E/R data models, and therefore OLTP business applications, are optimized 
for writing. E/R data models do not suffer for reading data, because the data 
access methods are generally well known; and data is generally located by a 
well known record key.

� If E/R data models are reasonably performant for writing and reading, why 
then do we need dimensional modeling?

– E/R data models represent the data as it currently exists. From the 
example in Figure 1-2 on page 12, the current state of the Customer 
Account, the current Inventory level (Stock table), the current Item Price 
(Stock table), are all things that are known. However, E/R data models do 
not adequately represent temporal data. That is, a history of data as it 
changes over time. What was the inventory level by product each morning 
at 9 AM, and by what percentage did sale revenue change and net profit 
rise or fall with the last retail price change. These are examples of the 
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types of questions that E/R models have trouble answering, but that 
dimensional models can easily answer.

– Although E/R models perform well for reading data, there are many 
assumptions for that behavior. E/R models typically answer simple 
questions which were well anticipated, such as reading a few data 
records, and only then via previously created record keys. Dimensional 
models are able to read vast amounts of data, in unanticipated manners, 
with support for huge aggregate calculations. Where an E/R model might 
not perform well, such as with sweeping ad hoc reads, dimensional 
models likely can. Where dimensional models might not perform well, 
such as when supporting intensive data writes, E/R models likely can. 
Dimensional models rely upon a great amount of redundant data, unlike 
E/R models, which have little or no redundant data. Redundant data 
supports the sweeping ad hoc reads, but would not perform as well in 
support of the OLTP writes.
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Figure 1-2   Sample OLTP schema

1.3.2  Dimensional modeling
The history of E/R modeling is tied to the birth of relational database technology. 
E/R models did perform well and serve OLTP business application systems well. 
However the promise of relational database to provide easy access for all to the 
corporate database came into dispute because of the E/R model. 
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An E/R data model for even a corporate division level application can have 
100-200 significant data tables and thousands of columns. And all with possibly 
cryptic column names, such as “mnth_end_amt_on_hnd”. This was thought to be 
too complex an environment for non-IT users. And the required task of joining 
three, five, nine, or more tables of data to produce a useful report was generally 
considered too complex a task for an everyday user. A new approach was 
required, and that approach was using dimensional modeling rather than E/R 
modeling.

This new categorization of business application was called Decision Support, or 
Business Intelligence, or a number of other names. Specific subtypes of these 
business applications were called data warehouses, data marts, and operational 
data stores.

Data warehouses and data marts still reside within relational database servers. 
They still use the Structured Query Language (SQL) data access command and 
control language to register their requests for service. They still place data in 
tables, rows, and columns. 

How data warehouses and data marts differ from OLTP systems with their E/R 
data model, is also detailed, and expanded upon, throughout this redbook. As a 
means to set current scope, expectations, and assumptions, in the next section 
we take the E/R data model from Figure 1-2 on page 12 and convert it to a 
dimensional model.

An example dimensional model
E/R data models are associated with OLTP business application systems. There 
is a process you go through to accurately design and validate an E/R data model. 
A business intelligence business application system may use an E/R data model, 
but most commonly uses a dimensional model. A dimensional model also goes 
through a design process so that it can be accurately designed and validated. 
Figure 1-3 on page 14 displays a dimensional model that was created from the 
E/R data model displayed in Figure 1-2 on page 12.
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Figure 1-3   Dimensional model created from that shown in Figure 1-2 on page 12

This data model was created to support a customer new order entry OLTP 
business application system. As mentioned, there is a process to create and then 
validate a data model. 
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The following points address the creation of a dimensional model.

� Creation of an E/R data model has a semi-rigid and well defined procedure to 
follow (there are rules called Normal Forms to which you must adhere); 
dimensional modeling is somewhat less formal and less rigid. Certainly there 
are design patterns and goals when creating a dimensional model, but 
dimensional modeling involves a percent of style. Perhaps all of this 
originates from the target audiences that E/R data models and dimensional 
models each have. E/R data models serve the IT architects and 
programmers, and indirectly serve users,  where dimensional models directly 
serve users.

� The central purpose of the E/R data model in Figure 1-2 on page 12 was to 
serve a sales application in a customer new order entry business application 
system. A customer order is, by one viewpoint, the central event or whole 
point of that application. You could also imagine it to centrally be an inventory 
management system, revenue recognition system, or other system. Taking 
the viewpoint of the central event being a customer placing a new order, we 
see that most of the tables in Figure 1-3 on page 14 point to a table titled 
Sales.

� A dimensional model may have one or more subjects, but simple dimensional 
models have only one subject. In the case of a single subject dimensional 
model, this subject is the primary topic, fact, or event of the model, and is 
joined by numerous dimensions. A synonym for dimension in this context 
might be demographic trait, index into (a given fact), or temporal state.

� The (central) fact table in the dimensional model shown in Figure 1-3 on 
page 14 is 
Sales. Sales is joined by the dimensions; Customer, Geography, Time, 
and then Product and Cost.

� Where E/R data models have little or no redundant data, dimensional models 
typically have a large amount of redundant data. Where E/R data models 
have to assemble data from numerous tables to produce anything of great 
use, dimensional models store the bulk of their data in the single Fact table, 
or a small number of them.

� Dimensional models can read voluminous data with little or no advanced 
notice, because most of the data is resident (pre-joined) in the central Fact 
table. E/R data models have to assemble data and best serve small well 
anticipated reads. Dimensional models would not perform as well if they were 
to support OLTP writes. This is because it would take time to locate and 
access redundant data, combined with generally few if any indexes. Why are 
there few indexes in a dimensional model? So often the majority of the fact 
table data is read, which would negate the basic reason for the index. This is 
referred to as index negation, a topic discussed further in Chapter 10, “SQL 
query optimizer: A primer” on page 497.
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These are but brief examples so that you may gather an introductory 
understanding of the topic of this IBM Redbook. The following is a detailed list of 
the remaining contents.

1.4  Redbook contents abstract
In this section, we give a brief description of the topics we present in this IBM 
Redbook and how we organize them. We cover a wide spectrum of information, 
because that is what is demanded for business intelligence solutions. However, 
keep in mind that the more specific focus of this redbook is on dimensional 
modeling and how it impacts business intelligence solutions.

The information presented includes topics such as OLTP, business intelligence, 
dimensional modeling, program architectures, and database server 
architectures. Depending on your specific interest, level of detail, and job focus, 
certain chapters may be more relevant to your needs than others. So, we have 
organized this redbook to enable selectivity in reading.

Let us get started with a brief overview of the IBM Redbook contents:

� Chapter 1, “Introduction” includes:

– A description of the objectives and scope of the redbook, and summarizes 
the value to be gained from reading this redbook.

– A summary of the evolution of information technology and describes how it 
relates to dimensional modeling.

– Positioning and relationship of data modeling and business intelligence.

– An introduction to dimensional modeling, that includes descriptions and 
examples of the types of data modeling.

� Chapter 2, “Business Intelligence: The destination”, includes:

– A focus on business intelligence, beginning with an overview.

– A discussion of the IBM Information Pyramid, an important structure to 
understand as you develop your data, and data warehousing, architecture.

– A brief discussion of the impact of the World Wide Web on data modeling.

– An overview of three of the key BI initiatives and how data modeling 
impacts them. 

� Chapter 3, “Data Model: The organizing structure”, includes:

– More detailed descriptions of data modeling, along with detailed 
discussions about the types of data modeling.
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– An description of several data warehousing architectures, discussions 
about the implementation of data warehousing architectures, and their 
reliance on the data model.

– An introduction to the data modeling life cycle for data warehousing.

� Chapter 4, “Data analysis techniques”, includes:

– A description of data analysis techniques, other than data warehousing 
and BI. This includes a discussion of the various enterprise information 
layers in an organization.

– An overview of BI reporting tool architectures, which includes a 
classification of BI users based on their analytical needs. This includes 
query and reporting, and multidimensional analysis techniques.

– An overview of querying and reporting tool capabilities that you can use in 
your data analysis environment.

� Chapter 5, “Dimensional model design life cycle”, includes:

– An introduction to a dimensional modeling design life cycle. Included are 
the structure, phases, and a description of the business process 
requirements.

– A description of the life cycle phases that can guide you through the 
design of a complete dimensional model.

� Chapter 6, “Modeling considerations”, includes:

– A discussion of considerations and issues you may encounter in the 
development of a dimensional model. It provides you with examples and 
alternatives for resolving these issues and challenges.

– Guidelines for converting an E/R model to a dimensional model.

� Chapter 7, “Case Study: Dimensional model development”, includes:

– A case study in the development of a dimensional model. It includes a 
description of the project and case study company. The company data 
model requirements are described, and the dimensional design life cycle 
is used to develop a model to satisfy the requirements. The objective is to 
demonstrate how you can start with requirements and use the life cycle to 
design dimensional models for your company.

� Chapter 8, “Case Study: Analyzing a dimensional model”, includes:

– Another case study. However, this is a study analyzing an existing 
dimensional model. The requirements and existing model are analyzed for 
compliance. Where the model design does not meet the requirements, 
you are provided with suggestions and methods to change the model. 

– A case study that can help prepare you to analyze your existing 
dimensional models to verify that they satisfy requirements.
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� Chapter 9, “Managing the meta data”, includes:

– Information on meta data. Having emphasized the importance of the 
dimensional model, now take a step back. Meta data is the base building 
block for all data. It defines and describes the data, and gives it structure 
and content.

– Definitions and descriptions of meta data types and formats. It also 
provides a discussion about meta data strategy, standards, and design.

– An overview of tools used to work with meta data.

� Chapter 10, “SQL query optimizer: A primer”, includes:

– A review of relational database server disk, memory, and process 
architectures, which includes the relational database server multistage 
back-end.

– A detailed and real world query optimizer case study. In this section, a 
query is moved from executing in five minutes to subsecond. In addition to 
the technology used to improve the performance of this example, a 
methodology of SQL statement tuning and problem solving is introduced.

– A full review of the algorithms of rules and cost-based query optimizers. 
This includes reading query plans, table access methods, table join 
methods, table join order, b-tree+ and hash indexes, and gathering 
optimizer statistics (including data distributions, temporary objects, and 
others).

– A detailed review of other query optimizer technologies, to include; query 
rewrite, optimizing SQL command parser use, index negation, query 
optimizer directives, table partitioning, and multidimensional clustering.

� Chapter 11, “Query optimizer applied”, includes:

– An overview of the Development Life Cycle, specifically the Waterfall 
method.

– A discussion of the issues encountered with the life cycle, and the subject 
of process modeling within the life cycle.

– A discussion of artifacts created by a process model, such as the SQL 
API, and query plan documents. 

– An example of process modeling with explanations of the steps and 
structure. It also includes an SQL DML example, along with an explanation 
of those steps and the structure.

That is a brief description of the contents of the redbook, but it hopefully will help 
guide you with your reading priorities.
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Chapter 2. Business Intelligence: The 
destination

In Chapter 1, we gave an overview introduction to the scope, objectives, and 
content of the redbook. We also introduced the two primary techniques used in 
data modeling (E/R and Dimensional), positioned them, and then stated that in 
this redbook we have a specific focus on dimensional modeling.

However, it is good to keep in mind the bigger picture and understand why we are 
so interested in the topic of dimensional modeling. Simply put, it is because the 
data model is the base building block for any data structure. In our case, the data 
structure is a data warehouse. And, the data warehouse is the base building 
block that supports business intelligence solutions - which is really the goal we 
are trying to achieve. It is our destination.

Since it is our destination, we need to have an understanding of what it is and 
why we want to go there.

Here we introduce the topic of business intelligence, discuss BI activities, 
describe key business intelligence initiatives, show you several data warehouse 
architectures, and then describe the impact that data modeling has on them.

The specific topics we cover are:

� An overview of business intelligence
� Business intelligence initiatives

2
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– Business Performance Management
– Real-time Business Intelligence
– Data Mart Consolidation

� The impact of data modeling on the key BI initiatives
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2.1  Business intelligence overview
In the competitive world of business, the survival of a company depends on how 
fast they are able to recognize changing business dynamics and challenges, and 
respond correctly and quickly. Companies must also anticipate trends, identify 
new opportunities, transform their strategy, and reorient resources to stay ahead 
of the competition. The key to succeeding is information.

Companies collect significant volumes of data, and have access to even more 
data from outside their business. They need the ability to transform this raw data 
to actionable information by capturing, consolidating, organizing, storing, 
distributing, analyzing, and providing quick and easy access to it. This is the 
competitive advantage, but also the challenge. All of this is the goal of business 
intelligence (BI). BI helps a company create knowledge from that information to 
enable better decision making and to convert those decisions into action.

BI can help with the critical issues of a company, such as finding areas with the 
best growth opportunities, understanding competition, discovering the major 
profit and loss areas, recognizing trends in customer behavior, determining their 
key performance indicators, and changing business processes to increase 
productivity. BI analyzes historical business data that is created by business or 
derived from external sources, such as climatic conditions and demographic 
data, to study a particular function or line of business. Information is used to 
understand business trends, strengths, weaknesses, and to analyze competitors 
and the market situation. Prior to the existence of BI technologies, many 
companies used standard conventional methods to transform data into 
actionable information. This was certainly a laborious process that consumed 
enormous amounts of resources and time, not to mention the human error factor. 

2.1.1  Information environment
It should be clear that BI is all about information, and the home for that 
information is an enterprise data warehouse. It is no longer something that is 
built for a particular advantage, it should now be seen as a business requirement. 
That requirement is to have a structured and organized information environment. 
Such a structure contains a number of different types and organizations of data. 
And, those can be organized into a structured environment. We depict this 
environment as an information pyramid in Figure 2-1 on page 24.
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Figure 2-1   Information pyramid: an example

The information technology organization (IT) has traditionally seen different 
types of data in the information pyramid as separate layers, and required that 
data to be copied from one layer to another. However, you should look at 
different types of data as different views of the same data, with different 
characteristics, required to do a specific job. To emphasize that, we have labeled 
them as floors, rather than layers, of information. 

To move and copy the data between the floors (and typically from the lower to the 
higher floors) is no longer the only option available. There are a number of 
approaches that enable integration of the data in the enterprise, and there are 
tools that enable those approaches. At IBM, information integration implies the 
result, which is integrated information, not the approach.

We have stated that the data on each floor has different characteristics, such as 
volume, structure, and access method. Now we can choose how best to 
physically store and organize the data on the different floors. For example, we 
can decide whether the best technology solution is to build the floors separately 
or to build the floors together in a single environment. An exception is floor zero, 
which, for some time, will remain separate. For example, an OLTP system may 
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reside in another enterprise, or another country. Though separate, we still can 
have access to the data and can move it into our data warehouse environment.

Floors one to five of the information pyramid can be mapped to the layers in an 
existing data warehouse architecture. However, this should only be used to 
supplement understanding and subsequent migration of the data. The preferred 
view is one of an integrated enterprise source of data for decision making — and 
a view that is current, or real-time.

2.1.2  Web services
At the start of Chapter 1, we discussed major eras in IT. One of those was about 
bringing your business to the World Wide Web. The Web has revolutionized the 
information industry, and dramatically changed the way the world does business. 

There are many things we could discuss regarding the advantages and advances 
made and supported by the Web. However, although the Web has not 
significantly impacted the technology of dimensional modeling, it has certainly 
resulted in a number of changes. For example, there are many new data 
definitions to be included in the meta data and data model. And there has been a 
significant increase in the volumes of data captured and transmitted, but this 
does not directly impact the dimensional model.

Web services are a key advance that has significantly impacted applications. 
The word Web in Web services means that all operations are performed using 
the technology and infrastructure of the World Wide Web. The word service 
represents an activity or processing performed on behalf of a requestor, such as 
a person or application. Web services have existed ever since the Web was 
invented. The ability of a Web browser to access e-mail and the ability to order a 
product on the Internet are examples of Web services. More recently, however, 
Web services increasingly make use of XML-based protocols and standards, and 
it is better to think in terms of XML Web services. In this book, for simplicity, we 
use the term Web services to signify XML Web services.

The promise of Web services
Web services technology is essentially a new programming paradigm to aid in 
the development and deployment of loosely-coupled applications both within and 
across enterprises. In the past, developers have developed most of their 
applications from the ground up. The term code reuse was used, but this was 
often not put into practice because developers typically only trust the code they 
develop. As software development has progressed as a discipline, and as 
programming languages have also advanced, the ability to reuse application 
code has increased. The Java™ programming language, for example, has many 
built-in class libraries that developers use.
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As applications grow, they must execute in a distributed environment. Distributed 
applications provide unlimited scalability and other benefits. Defining an interface 
for distributed applications has been a challenge over the years. 
Language-independent technologies, such as CORBA (Common Object 
Request Broker Architecture), provide a comprehensive and powerful 
programming model. Other distributed technologies work well within a single 
language environment, such as Java RMI (Remote Method Invocation) and 
Microsoft DCOM (Distributed Common Object Model), but are not useful in a 
heterogeneous systems environment.

In contrast, Web services provide a simple-to-understand interface between the 
provider and the consumer of application resources using a Web Service 
Description Language (WSDL). Web services also provide the following 
technologies to help simplify the implementation of distributed applications:

� Application interface discovery using Universal Description, Discovery, and 
Integration (UDDI) 

� Application interface description, again using UDDI 

� A standard message format using Simple Object Access Protocol (SOAP), 
which is being developed as the XML Protocol specification by W3C 

Web services enable any form of distributed processing to be performed using a 
set of standard Web- and XML-based protocols and technologies. For more 
detailed information about Web services and related topics, see the work effort 
by the World Wide Web Consortium at:

http://www.w3c.org

In theory, the only requirements for implementing a Web service are:

� A technique to format service requests and responses 
� A way to describe the service 
� A method to discover the existence of the service
� The ability to transmit requests and responses to and from services across a 

network 

The primary technologies used to implement these requirements in Web 
services are XML (format), WSDL (describe), UDDI (discover), and SOAP 
(transmit). There are, however, many more capabilities (authentication, security, 
transaction processing, for example) required to make Web services viable in the 
enterprise, and there are numerous protocols in development to provide those 
capabilities.

It is important to emphasize that one key characteristic of Web services is that 
they are platform neutral and vendor independent. They are also somewhat 
easier to understand and implement than earlier distributed processing efforts, 
such as CORBA. Of course, Web services still need to be implemented in vendor 
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specific environments, and this is the focus of facilities such as IBM Web 
Services.

Web services architecture
The Web services architecture is defined in several layers. These layers are 
illustrated in Figure 2-2. 

Figure 2-2   Web services layered architecture

The underpinnings of the Web services architecture are WSDL and SOAP. 
WSDL is an XML vocabulary used to describe the interface of a Web service, its 
protocol binding and encoding, and the endpoint of the service. SOAP is a 
lightweight protocol for the exchange of information in a distributed environment, 
and is used to access a Web service. It is transport-protocol independent. SOAP 
messages can be transported over HyperText Transfer Protocol (HTTP), for 
example, but other protocols are also supported. Examples include:

� SOAP over WebSphere® MQ (Message Queuing)

� RMI (Remote Method Invocation) over IIOP (Internet Inter-ORB [Object 
Request Broker] Protocol)

At present, the current SOAP standard only defines bindings for HTTP. SOAP is 
rightfully seen as the base for Web application-to-application interoperability. The 
fast availability of SOAP implementations, combined with wide industry backing, 
has contributed to its quick adoption.

SOAP employs a XML-based RPC (Remote Procedure Call) mechanism with a 
request/response message-exchange pattern. It is used by a service requestor 
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to send a request envelope to a service provider. The SOAP request envelope 
contains either an RPC method call or a structured XML document. Input and 
output parameters, and structured XML documents are described in XML 
schema. The service provider acts on a request and then sends back a SOAP 
response envelope. 

The existence of a Web service can be published and advertised in a public 
UDDI registry. Publishing Web services in a public registry allows client 
applications to discover and dynamically bind to Web services. UDDI helps 
distributed application developers solve the maintenance problem caused by 
constantly changing application interfaces. Developers can use internal private 
registries, and public UDDI registries (hosted on the Internet by companies, such 
as IBM and Microsoft) to publicize their application interfaces (as specified by 
WSDL) and to discover other Web services. When a WSDL interface changes, a 
developer can republish the new interface to the registry, and subsequent 
access to the Web service will bind dynamically to the new interface.

IBM Web services
Two key IBM products for supporting Web services are WebSphere Studio and 
the WebSphere Application Server.

WebSphere Studio contains a set of development tools for creating and 
maintaining Java applications that use Web services, and it is based on an open 
development framework known as Eclipse. For more details, see:

http://www.eclipse.org 

WebSphere Studio provides tools for creating WSDL interfaces to Java 
applications and DB2 data. You can publish Web services defined using 
WebSphere Studio to a UDDI registry directly from the WebSphere Studio 
environment. WebSphere Studio provides a UDDI browser. 

IBM WebSphere Application Server is a J2EE-compliant Java Web Application 
Server. It is an ideal platform for hosting DB2 Web service provider applications. 
WebSphere Application Server includes the Apache SOAP server. For details, 
see:

http://ws.apache.org/soap/

2.1.3  Activity examples
Typically, BI solutions use different technologies for lines of business and 
departments, and you can implement them in several ways. The focus of this 
redbook is to explore dimensional modeling and its impact on BI 
implementations.
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Business Intelligence activities include such activities as:

� Multidimensional Cube Analysis
� Business analysis
� Clickstream analysis
� Information visualization
� Forecasting
� Data mining (text, video, and voice)
� Trending analysis
� Query and reporting
� Geo-spatial analysis
� Enterprise portal implementation
� Digital dashboards

The following are examples of BI usage in a company:

� Operations: BI has an active role in helping management meet their 
operational performance measurements. For example, each manager in a 
retail company can receive a digital dashboard with summaries of key 
performance indicators in their particular area of responsibility. This can be 
areas such as a store or department, specific merchandise, loss prevention, 
risk, or cash flow. Whenever the actual performance falls below a preset 
threshold, BI can send alerts to the managers indicating a potential problem. 
This gives the manager the ability to monitor performance metrics, analyze 
information, make proactive decisions, and act on those decisions. The 
manager can visualize the impact of the changes made as a result of the 
changing performance indicators on the dashboard.

� Finance: BI provides immediate access to financial budgeting and 
forecasting data. That enables business decisions to be made based on 
current and accurate financial data, such as personalized views of revenue 
information by product, customer, merchandise, region, store, and time 
period. It also enables business decision makers to develop trend revenue 
forecasts with accuracy and speed, to compare and contrast revenues with 
the goals, and identify the areas in which the company is performing better or 
worse. Management at that point is well-armed with accurate information so 
they can act effectively and in a timely fashion.

� Customer Service: BI helps organizations assess various market segments 
and customers, identify potential new business, and retain existing business. 
For example, you can directly correlate customer information with the sales 
information. Companies that have focused on customer service and customer 
relationships have typically realized significant competitive advantage.

� Human Resources: BI supports activities such as recruitment, employee 
retention, and career development. Organizations can align staffing needs 
with strategic goals by mapping those goals to the skills needed to achieve 
them. They can then identify the recruitment practices required to bring high 
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quality individuals on board and identify new potential candidates for 
management. BI also provides information critical for areas, such as 
compensation planning, employee benefit planning, productivity planning, 
and skills rating.

� Marketing: One of the most important beneficiaries of BI in any company is 
the marketing department. BI helps them identify various trends in business, 
analyze revenues on a daily basis, identify high performers, quantify the 
impact of price changes, and identify opportunities for growth. For example, a 
trucking company can analyze fuel rate increases to determine such things as 
the impact on revenue and profitability, identify heavy/low impact segments, 
obtain optimized trucking routes, and identify multi-modal routing 
opportunities.

2.1.4  Drivers
Business intelligence permeates every area of a business enterprise. It is the 
need for more and more information that drives it. Those who have access to 
more and accurate information are in a position to enable better 
decision-making. Information is a significant business and competitive 
advantage.

Business measurements
There is an ongoing and ever demanding need for businesses to increase 
revenues, reduce costs, and compete more effectively. Companies today are 
under extreme pressure to deploy applications rapidly, and provide business 
users with easy and faster access to business information that will help them 
make the best possible decisions in a timely manner. 

Business complexity
Companies today are offering and supporting an ever growing range of products 
and services to a larger and more diverse set of clients than ever before. BI 
provides the sophisticated information analysis capabilities required to handle 
those business complexities, such as mergers, acquisitions, and deregulation. 

Business costs 
There is a growing need to reduce the overhead of IT expenditures in every 
company. There is increased pressure on IT to leverage their existing systems to 
maximum benefit for the business. BI widens the scope of that ability by enabling 
access not only to operational and data warehouse data, but also to external 
data.
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2.2  Key business initiatives
For example, we provide a brief summary of three of the key initiatives. They are 
quickly becoming the differentiators as competition becomes more and more 
intense. This not only applies to revenues from products and services, but also to 
the internal processes and operations that can minimize production delivery 
schedules and impact cost. These internal goals are significantly increasing in 
importance, because they can dramatically impact the ability of the company to 
meet their business performance measurements.

Business measurements and goals have come under more close scrutiny by 
management and stakeholders, and the measurement time frames are much 
shorter. For example, management must now be in a position to track and report 
performance against quarterly goals. Missing those goals can result in a 
significant response from the marketplace - and can typically be directly reflected 
in a changing stakeholder value assessment.

2.2.1  Business performance management
In the dynamic business environment, increased stakeholder value has become 
the main means by which business executives are measured. The ability to 
improve business performance is therefore a critical requirement for 
organizations. Failure to improve business performance is under close scrutiny 
by stakeholders. Their voices are heard through the buying or selling of company 
stock. One result of this is increased volatility of stock prices, which creates a 
tense roller-coaster ride for executives. Bringing more pressure to bear, is the 
fact that business performance measurement time frames are becoming ever 
shorter. Quarterly targets have replaced annual ones, and the expectation of 
growth and success is there at every quarter end.

To help smooth out the roller-coaster ride, businesses must react quickly to 
accommodate changing marketplace demands and needs. Flexibility and 
business agility are key to remaining competitive and viable. We need a holistic 
approach that enables companies to align strategic and operational objectives in 
order to fully manage achievement of their business performance 
measurements. 

The objective of BPM is to help companies improve and optimize their 
operations across all aspects of the business. Business requirements, therefore, 
determine what type of BPM environment is necessary. Implementing BPM, 
however, is more than just about installing new technology, it also requires 
organizations to review the business environment to determine if changes are 
required to existing business processes to take advantage of the benefits that 
BPM can provide.
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To become more proactive and responsive, businesses need the information that 
gives them a single view of their enterprise. With that, they can:

� Make more informed and effective decisions

� Manage business operations and minimize disruptions

� Align strategic objectives and priorities both vertically and horizontally 
throughout the business

� Establish a business environment that fosters continuous innovation and 
improvement

The need to continuously refine business goals and strategies, however, requires 
an IT system that can absorb these changes and help business users optimize 
business processes to satisfy business objectives. BPM assists here by 
providing performance metrics, or key performance indicators (KPIs), which 
businesses can employ to evaluate business performance. A KPI is a 
performance metric for a specific business activity that has an associated 
business goal or threshold. The goal or threshold is used to determine whether 
or not the business activity is performing within accepted limits. The tracking and 
analysis of KPIs provides business users with the insight required for business 
performance optimization. 

BPM also becomes a great guide for IT departments that are asked to do more 
with less. It helps them focus their resources in areas that provide the most 
support to enable management to meet their business goals. They can now 
prioritize their tasks and focus on those aligned with meeting business 
measurements and achieving the business goals.

BPM requires a common business and technical environment that can support 
the many tasks associated with performance management. These tasks include 
planning, budgeting, forecasting, modeling, monitoring, analysis, and so forth. 

Business integration and business intelligence applications and tools work 
together to provide the information required to develop and monitor business 
KPIs. When an activity is outside the KPI limits, alerts can be generated to notify 
business users that corrective action needs to be taken. Business intelligence 
tools are used to display KPIs and alerts, and guide business users in taking 
appropriate action to correct business problems. To enable a BPM environment, 
organizations may need to improve their business integration and business 
intelligence systems to provide proactive and personalized analytics and reports.

Simply stated, BPM is a process that enables you to meet your business 
performance measurements and objectives. A BPM solution enables that 
process. It enables you to proactively monitor and manage your business 
processes, and take the appropriate actions that result in you meeting your 
objectives. 
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There are a few words in the previous statement that require you to take action. 
Here are a few examples:

� Monitor your processes. This means you have well-defined processes, and a 
way to monitor them. And the monitoring should be performed on a 
continuous basis.

� Manage your processes. You must be aware of their status, on a continuous 
basis. That means you must be notified when the process is not performing 
satisfactorily. In your well-defined process, you need to define when 
performance becomes unsatisfactory. Then you must get notified so you can 
take action.

� Appropriate action. You need the knowledge, flexibility, and capability to take 
the appropriate action to correct problems that arise.

BPM places enormous demands on BI applications and their associated data 
warehouses to deliver the right information at the right time to the right people. To 
support this, companies are evolving their BI environments to provide (in addition 
to historical data warehouse functionality) a high-performance and 
enterprise-wide analytical platform with real-time capabilities. For many 
organizations this is a sizable challenge, but BPM can be the incentive to move 
the BI environment to a new level of capability.

IBM has also developed a BPM Framework that enables the assembly of 
components encompassing business partner products and IBM foundation 
technologies. The framework includes a wide range of capabilities for modeling, 
integrating, connecting, monitoring, and managing business operations within an 
enterprise and across a value chain of trading partners and customers. The 
unifying framework that accommodates the IBM framework is illustrated in 
Figure 2-3 on page 34. This framework identifies the functional components 
required for the real-time monitoring, analysis, and optimization of business 
operations, and their underlying IT infrastructure. 
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Figure 2-3   IBM BPM framework

Creating a unified framework is critical to the success of a BPM implementation. 
BPM is a paradigm that succeeds from proactively managing the environment, 
rather than reactively resolving individual business issues. There is a need, 
therefore, for an architected solution that consolidates and integrates data 
related to monitoring, events, alarms, and situation-related information across 
the enterprise. Fracturing that enterprise view with isolated data silos defeats the 
purpose of BPM. That is, it actually inhibits the ability to monitor and manage 
enterprise-wide business performance. 

You can satisfy the need for a unified solution by integrating the required data in 
a DB2 data warehouse and using the data warehouse to feed the BPM 
environment. If this is not feasible, use information integration technologies, such 
as the IBM WebSphere Information Integrator, to create an integrated business 
view of disparate source data. Using dependent data marts, that leverage data 
from a data warehouse, is another possible solution. We do not recommend, 
however, building a BPM solution using data from independent data marts, or 
sourcing the data directly out of the operational systems. These approaches 
involve isolated data silos that can lead to inconsistencies and inaccurate results.

IBM BPM solutions are based on DB2 relational databases, as well as a 
combination of DB2 relational databases and DB2 OLAP databases. In most 
cases, the BPM environment involves a multi-tier approach, consisting of existing 
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applications, data warehouses that feed the BPM solution, BPM tools, and 
packaged applications.

Implementing a BPM system results in making business performance data 
available to everyone that needs it. Usually, most of this performance data has 
not been available to business users prior to the BPM implementation. A BPM 
solution is typically facilitated by providing the proactive distribution of the data 
through graphical dashboards, rather than relying on users to search for data 
they require. Most users respond positively to graphical dashboards embedded 
in enterprise portals, and require little if any training in how to use them.

BPM and BI
Any BI implementation is aimed at turning available data into information and 
putting it into the hands of decision makers. It might be easy to conclude 
therefore that BI and BPM are the same thing. BPM is focused, however, on a 
subset of the information delivered by a BI system. BPM is concerned with 
information that shows business performance and indicates business success or 
failure. This information subset enables organizations to focus on the important 
task of optimizing business performance.

BI enables businesses to access, analyze, and use their data for decision making 
purposes. It is used for long-term strategic planning, short-term tactical analysis, 
and for managing the daily operational business activities. Key developments in 
the use of BI include: 

� Tactical and strategic BI are moving closer together. This is because strategic 
time frames (budgeting and forecasting cycles, for example) are shrinking to 
enable companies to become more responsive to business needs and 
customer requirements.

� Analytic applications are used more and more for proactively delivering 
business intelligence to users, rather than requiring them to discover it for 
themselves. In many cases, these applications not only deliver information 
about business operations, but also put actual business performance into 
context by comparing it against business plans, budgets, and forecasts.

� Dashboards are the becoming the preferred method for delivering and 
displaying business intelligence to users. Dashboards are more visual and 
intuitive, and typically provide linkages that can enable people to take 
immediate action.

� Business rules are a key requirement as companies implement so-called 
closed-loop processing to use the results of business intelligence processing 
to optimize business operations. This is particularly true when there is a 
requirement to support automated decisions, recommendations, and actions.
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� Close to real-time (near real-time), or low-latency, business information is 
becoming an important requirement as organizations increasingly make use 
of business intelligence for managing and driving daily business operations.

BPM forms the underpinnings for many of the BI developments we outline. 
Specifically, BPM provides the BI to improve operational decision making, 
become more proactive and timely, and support a wide range of business 
functions.

BPM enables a BI system to tap into business events flowing through business 
processes, and to measure and monitor business performance. BPM extends 
traditional operational transaction processing by relating measures of business 
performance to specific business goals and objectives. User alerts and 
application messages can then inform business analysts and applications about 
any situations that require attention. The integration of business process 
monitoring with operational BI analytics enables a closed-loop solution. 

2.2.2  Real-time business intelligence
As business and technology continue to change and improve, a new phenomena 
is occurring. The two originally opposite ends of the business intelligence 
spectrum, namely tactical and strategic decision-making, are becoming much 
more closely aligned. 

There is a merging of requirements and a need for current information by 
everyone. It is fueling and enabling the acceleration toward another key 
capability that is called closed-loop analytics. That means the results of data 
warehousing, or business intelligence, analytics are being fed back to the 
operational environment. Events can now be acted upon almost immediately, 
avoiding costly problems rather than simply trying to minimize their impact. This 
is a significant leap forward, and can now be realized with the capability to 
support real time.

The Internet is also playing a key role in this movement. For example, investors 
now have access to information as never before. And, they can move their money 
in and out of investments quickly. If one company is not performing, they can 
quickly and easily move their investment to another. Now everyone seems to 
have the need for speed. They want results, and they want them now! They want 
information, and they want it in real time!

To meet the requirements and support this change in thinking and measurement, 
companies are moving towards real time. Change, flexibility, and speed are now 
key requirements for staying in business. Typically, tactical (or short-term) 
decisions are made from the operational systems. However, that data usually 
requires a good deal of analysis and time to provide benefit. And strategic (or 
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long-term) decisions are made from historical data - which may exist in a data 
warehouse. This process must change to support real time. 

The direction is to make data for both types of decision-making available, or 
accessible, from the data warehousing environment. Then you can combine, 
analyze, and present it in a consistent manner to enable more informed 
management decision-making. The data warehousing environment is now 
fulfilling its destiny as the enterprise data repository. It is the base for all business 
intelligence systems. However, that means you must get the data into the data 
warehouse in a much more timely manner. Can you do it in real time?

The answer is yes, depending on your definition of real time. Regardless, the 
movement to real time has be an evolution, because it requires a gradual 
re-architecting of the company infrastructure and business process 
re-engineering. The evolution needs to be based on business requirements and 
priorities, and a sound business case. Companies will move a step at a time 
along this evolution.

The various processes that supply data can work independently or in concert 
with one another. One differentiator that impacts the list of processes for Getting 
Data Into the data warehouse is identified in the term Continuous Loading that is 
depicted in front of these processes in Figure 2-4 on page 38. That is a key 
requirement for enabling real time, and brings with it a number of issues and 
required product or implementation capabilities. 

Getting the data into the data warehouse is, of course, of utmost importance. 
Without it, there is no business intelligence. However, the real value of data 
warehousing and BI lies on the right side of Figure 2-4 on page 38. That is the 
category of Getting Data Out. That data provides the information that enables 
management to make more informed decisions. And, the key now is that 
management works with data that is genuinely current, that is, real-time, or near 
real-time, data. 
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Figure 2-4   Real-time BI

To make use of the current data, users must be aware of it. Many 
implementations create the environment, and then simply enable users with 
query capability. To increase the value received, the environment needs to be 
proactive. Enable the environment to recognize important events and alert users 
automatically so they can take corrective action. Or, the environment must 
display current status as changes occur rather than requiring a user to ask for 
current status. To enable this capability, you can define key performance 
indicators (KPI) with threshold values as one way to trigger such alerts. When a 
defined threshold is exceeded, the system could automatically trigger an alert.

This capability will typically require a change in your business processes. Logic 
must be included in the process and imbedded in your applications. It is not 
sufficient for a user to run queries or look at reports to try to identify when 
processes need attention. That decision process should be added to your 
application software so it can automatically be ever watchful for those processes 
that exceed specific thresholds. And notify you in real time! That is a vital and 
very beneficial value of real-time processing. The objective is to avoid problems 
rather than just reacting to them. To avoid costly problems and issues rather than 
simply trying to minimize their impact.

To implement these added capabilities requires new types of applications, such 
as analytic applications and interactive information dashboards. They can 
monitor processes, detect values and compare to thresholds, and display or 
deliver alerts and associated real-time data to the users for immediate action. 
Better still, put logic into the analytic applications to enable them to do much, or 
all, of the decision processing and action initiation. This capability would require 
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a good rules base for automated action taking. For situations requiring manual 
intervention, provide guidance. That guidance (or guided analysis) could be 
problem solving logic embedded in the analytic application. These are 
capabilities that can enable, initiate, and/or facilitate closed-loop processing. And 
it is a significant competitive advantage. 

Implementing real-time BI
The implementation of near real-time BI involves the integration of a number of 
activities. These activities are required in any data warehousing or BI 
implementation, but now we have elevated the importance of the element of time. 
The traditional activity categories of getting data in and getting data out are still 
valid. But, now they are ongoing continuous processes rather than a set of steps 
performed independently.

Figure 2-4 on page 38 depicts an overall view of real-time BI. On one side, it 
shows the various techniques for getting data into the data warehouse from the 
various data sources and integrating it. We see the following examples:

� Parallel ETL Engines: Data must be extracted from the operational 
environment, cleansed, and transformed before it can be placed in the data 
warehouse in order to be usable for query processing and analysis. These 
extract, load, transform (ETL) processes have historically been 
batch-oriented. Now they must be altered to run on a continuous or 
near-continuous basis. Running multiples of these processes in parallel is 
another alternative for getting data into the data warehouse as quickly as 
possible. Another approach is to extract and load the data, then perform any 
required transformations after the data is in the data warehousing 
environment. This extract, load, transform (ELT) process can result in 
updating the data warehouse in a shorter time frame.

� MQSeries® queues: These queues are key in a real-time environment. They 
are part of a messaging-oriented infrastructure, in this case delivered by the 
WebSphere family of products. Messaging systems assume the responsibility 
for delivery of the messages (data) put into their queues. They guarantee 
data delivery. This is extremely important because it relieves application 
programmers of that responsibility, which can significantly improve the 
application programmers’ productivity and translate into reduced 
development costs. As a general rule, it is always better to have systems 
software do as much as possible in the application development process. The 
result can be faster application delivery and at a lower cost. 

� Replication: WebSphere Information Integrator - Replication Edition delivers 
this capability. The capture component of replication takes the required data 
from system logs, which eliminates the need for application development to 
satisfy the requirement. It is another example of having the system provide 
the capability you need rather than developing, and maintaining, it yourself.
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� Web services: This is a strategy where you acquire and use specific services 
by downloading them from the Web. This makes them generally available to 
everyone for use in the application development process. It is another 
example of providing tested, reusable application modules when and where 
they are needed. And, it represents a potential reduction in application 
development costs.

� Information Integration: Data must also be available from external data 
sources, many of which are housed in a heterogeneous data environment. 
WebSphere Information Integrator is a product that can more easily enable 
you to access and acquire the data from these sources and use them for 
updating the data warehouse.

� The Operational Data Store (ODS) is another source of input to the data 
warehouse, but is unique in that it can concurrently be used by the operational 
systems. It typically contains data that comes from the operational transaction 
environment, but has been cleansed and prepared for inclusion in the data 
warehouse. The ODS is typically a separate sub-schema, or set of tables, and 
itself a driver for continuous loading of the real-time data warehouse. As such 
it is then considered as part of the data warehousing environment.

To summarize, real-time business intelligence is having access to information 
about business actions as soon after the fact as is justifiable based on the 
requirements. This enables access to the data for analysis and its input to the 
management business decision-making process soon enough to satisfy the 
requirement. 

2.2.3  Data mart consolidation
A data mart is a construct that evolved from the concepts of data warehousing. 
The implementation of a data warehousing environment can be a significant 
undertaking, and is typically developed over a period of time. Many departments 
and business areas were anxious to get the benefits of data warehousing, and 
reluctant to wait for the natural evolution. 

The concept of a data mart exists to satisfy the needs of these departments. 
Simplistically, a data mart is a small data warehouse built to satisfy the needs of 
a particular department or business area. Often the data mart was developed by 
resources external to IT, and paid for by the implementing department or 
business area to enable a faster implementation.

The data mart typically contains a subset of corporate data that is valuable to a 
specific business unit, department, or set of users. This subset consists of 
historical, summarized, and possibly detailed data captured from transaction 
processing systems (called independent data marts), or from an existing 
enterprise data warehouse (called dependent data marts). It is important to 
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realize that the functional scope of the data mart’s users defines the data mart, 
not the size of the data mart database. 

Figure 2-5 depicts a data warehouse architecture, with both dependent and 
independent data marts.

Figure 2-5   Data warehouse architecture with data marts

As you can see, there are a number of options for architecting a data mart. For 
example:

� Data can come directly from one or more of the databases in the operational 
systems, with few or no changes to the data in format or structure. This limits 
the types and scope of analysis that can be performed. For example, you can 
see that in this option, there may be no interaction with the data warehouse 
meta data. This can result in data consistency issues.

� Data can be extracted from the operational systems and transformed to 
provide a cleansed and enhanced set of data to be loaded into the data mart 
by passing through an ETL process. Although the data is enhanced, it is not 
consistent with, or in sync with, data from the data warehouse. 

� Bypassing the data warehouse leads to the creation of an independent data 
mart. It is not consistent, at any level, with the data in the data warehouse. 
This is another issue impacting the credibility of reporting.

� Cleansed and transformed operational data flows into the data warehouse. 
From there, dependent data marts can be created, or updated. It is key that 
updates to the data marts are made during the update cycle of the data 
warehouse to maintain consistency between them. This is also a major 
consideration and design point, as you move to a real-time environment. At 
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that time, it is good to revisit the requirements for the data mart, to see if they 
are still valid.

However, there are also many other data structures that can be part of the data 
warehousing environment and used for data analysis, and they use differing 
implementation techniques. These fall in a category we are simply calling 
analytic structures. However, based on their purpose, they could be thought of 
as data marts. They include structures and techniques, such as:

� Materialized query tables (MQT)
� Multidimensional clustering (MDC)
� Summary tables
� Spreadsheets
� OLAP (Online Analytical Processing) databases
� Operational data stores
� Federated databases

Although data marts can be of great value, there are also issues of currency and 
consistency. This has resulted in recent initiatives designed to minimize the 
number of data marts in a company. This is referred to as data mart 
consolidation (DMC). 

Data mart consolidation may sound simple at first, but there are many things to 
consider. A critical requirement, as with almost any project, is executive 
sponsorship, because you will be changing many existing systems on which 
people have come to rely, even though the systems may be inadequate or 
outmoded. To do this requires serious support from senior management. They 
will be able to focus on the bigger picture and bottom-line benefits, and exercise 
the authority that will enable making changes.

To help with this initiative, we constructed a data mart consolidation life cycle. I 
Figure 2-6 on page 43 depicts a data mart consolidation life cycle. 
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Figure 2-6   Data mart consolidation life cycle

In the following section, we give you a brief overview of the DMC process. The 
data mart consolidation life cycle consists of the following activities: 

� Assessment: During this phase, we assess the following topics: 

– Existing analytical structures
– Data quality and consistency
– Data redundancy
– Source systems involved
– Business and technical meta data
– Existing reporting needs
– Reporting tools and environment
– Other BI tools
– Hardware, software, and other inventory

� Planning: Key activities in the planning phase include: 

– Identifying business sponsor
– Identifying analytical structures to be consolidated
– Selecting the consolidation approach
– Defining the DMC project purpose and objectives
– Defining the scope

Note: Based on the assessment phase, create the “DMC Assessment 
Findings” report.
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– Identifying risks, constraints, and concerns

– In the planning phase above, based on the DMC Assessment Findings 
report, create the Implementation Recommendation report. 

� Design: Key activities involved in this phase are: 

– Target EDW schema design
– Standardization of business rules and definitions
– Meta data standardization
– Identify dimensions and facts to be conformed
– Source to target mapping
– ETL design 
– User reports 

� Implementation: The implementation phase includes the following activities: 

– Target schema construction
– ETL process development
– Modifying or adding user reports
– Standardizing reporting environment
– Standardizing other BI tools

� Testing: This may include running in parallel with production.

� Deployment: This will include user acceptance testing.

� Loopback: Continuing the consolidation process, which loops you back to 
start through some, or all, of the process again.

When you understand all the variables that enter into a data mart consolidation 
project, you can see how it can become a rather daunting task. There are not 
only numerous data sources with which to deal, there is the heterogeneity. That 
is, data and data storage products from numerous different vendors. Consider 
that they all have underlying data models that must be consolidated and 
integrated. It can be a significant integration (consolidation) project.

2.2.4  The impact of dimensional modeling
We have discussed three key BI initiatives. They are all powerful and can provide 
significant benefits to the implementing companies. The common thread among 
all of them is the need for data. Well, the actual need is information, but that 
comes from the data. And each of those initiatives not only use data, but they 
also provide it.

That data typically comes from, and goes into, the enterprise data warehouse. 
That is the one common and consistent source of data in an enterprise. And as 
we all know, BI is built on, integrated with, and dependent on, the data 
warehouse. Therefore, it should not be a surprise when we state that all 
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companies need a robust and well designed data warehouse if they want to be 
successful, and survive.

And one thing you should understand from reading this redbook, is that the 
unifying structure of the data warehouse is the data model. It is the glue that 
holds everything together, and so is deserving of significant attention. And to get 
the information from the data warehouse, you need business intelligence 
solutions.

You can begin to get a better appreciation for the impact of data modeling as you 
look closer at data mart consolidation. This initiative involves merging data (and 
the associated data models) from multiple data marts. And these data marts can 
exist on many heterogeneous platforms and reside in many different databases 
and data structures from many different vendors. As you look at the formats, data 
types, and data definitions from these heterogeneous environments, you quickly 
see the beginning of a complex task, and that is the integration of all these 
heterogeneous components and elements, along with all the associated 
applications and queries.

From all this it should become clear that the role of the data modeler is highly 
significant and of utmost importance in the quest for the integrated real-time 
enterprise.
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Chapter 3. Data modeling: The 
organizing structure

Data modeling is important because it specifies the data structure, which can 
impact all aspects of data usage. For example, it can have a significant impact on 
performance. This is particularly true with data warehousing. And, the data 
warehouse is the primary structural element in business intelligence.

Key to business intelligence is the ability to analyze huge volumes of data, 
typically by means of query processing and analytic applications. And for this, 
performance is critical. We provide more detail on this topic in this chapter.

In addition, we discuss the topics of:

� The primary data modeling techniques (E/R and dimensional modeling)

� Data warehouse (DW) architecture choices and the data models involved:

– Enterprise data warehouse
– Independent data marts
– Dependent data marts

� The data modeling life cycle for the data warehouse, which includes both 
logical and physical modeling

3
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3.1  The importance of data modeling
Generally speaking, a model is an abstraction and reflection of the real world. 
Modeling gives us the ability to visualize what we cannot yet realize. It is the 
same with data modeling. The primary aim of a data model is to make sure that 
all data objects required by the business are accurately and fully represented.

From the business perspective, a data model can be easily verified because the 
model is built by using notations and language which are easy to understand and 
decipher.

However, from a technical perspective the data model is also detailed enough to 
serve as a blueprint for the DBA when building the physical database. For 
example, the model can easily be used to define the key elements, such as the 
primary keys, foreign keys, and tables that will be used in the design of the data 
structure.

Different approaches of data modeling
Data models are about capturing and presenting information. Every organization 
has information that is typically either in the operational form (such as OLTP 
applications) or the informational form (such as the data warehouse). 

Traditionally, data modelers have made use of the E/R diagram, developed as 
part of the data modeling process, as a communication media with the business 
analysts. The focus of the E/R model is to capture the relationships between 
various entities of the organization or process for which we design the model. 
The E/R diagram is a tool that can help in the analysis of business requirements 
and in the design of the resulting data structure.

However, the focus of the dimensional model is on the business. Dimensional 
modeling gives us an improved capability to visualize the very abstract questions 
that the business analysts are required to answer. Utilizing dimensional 
modeling, analysts can easily understand and navigate the data structure and 
fully exploit the data. Actually, data is simply a record of all business activities, 
resources, and results of the organization. The data model is a well-organized 
abstraction of that data. So, it is quite natural that the data model has become the 
best method for understanding and managing the business of the organization. 
Without a data model, it would be very difficult to organize the structure and 
contents of the data in the data warehouse.

E/R and dimensional modeling, although related, are extremely different. Of 
course, all dimensional models are also really E/R models. However, when we 
refer to E/R models in this book, we mean normalized E/R models. Dimensional 
models are denormalized.
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There is much debate about which method is best and the conditions under 
which you should select a particular technique. People use E/R modeling 
primarily when designing for highly transaction-oriented OLTP applications. 
When working with data warehousing applications, E/R modeling may be good 
for reporting and fixed queries, but dimensional modeling is typically better for ad 
hoc query and analysis.

For the OLTP applications, the goal of a well-designed E/R data model is to 
efficiently and quickly get the data inside (Insert, Update, Delete) the database. 
However, on the data warehousing side, the goal of the data model 
(dimensional) is to get the data out (select) of the warehouse.

In the following sections, we review and define the modeling techniques and 
provide selection guidelines. We also define how to use the data modeling 
techniques (E/R and Dimensional Modeling) together or independently for 
various data warehouse architectures. We discuss those architectures in 3.3, 
“Data warehouse architecture choices” on page 57.

3.2  Data modeling techniques
In Chapter 1, “Introduction” on page 1, we briefly discussed E/R and dimensional 
data modeling techniques. In this section, we discuss these important data 
modeling techniques in more detail, to understand the advantages and 
disadvantages of each.

3.2.1  E/R modeling
E/R modeling is a design technique in which we store the data in highly 
normalized form inside a relational database. Figure 3-1 on page 50 shows a 
visualization of a normalized E/R model. It is simply to depict how the various 
tables in an E/R model connect and interrelate. It is called a normalized 
structure. Normalization basically involves splitting large tables of data into 
smaller and smaller tables, until you have tables where no column is functionally 
dependent on any other column, each row consists of a single primary key and a 
set of totally independent attributes of the object that are identified by the primary 
key. This type of structure is said to be in third normal form (3NF).
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Figure 3-1   A typical E/R model

The objective of normalization is to minimize redundancy by not having the same 
data stored in multiple tables. As a result, normalization can minimize any 
integrity issues because SQL updates then only need to be applied to a single 
table. However, queries, particularly those involving very large tables, that 
include a join of the data stored in multiple normalized tables may require 
additional effort and programming to achieve acceptable performance.

Although data in normalized tables is a very pure form of data and minimizes 
redundancy, it can be a challenge for analysts to navigate. For example, if an 
analyst must navigate a data model that requires a join of 15 tables, it may likely 
be difficult and not very intuitive. This is one issue that is mitigated with a 
dimensional model, because it has standard and independent dimensions.

We strongly recommend third normal form for OLTP applications since data 
integrity requirements are stringent, and joins involving large numbers of rows 
are minimal. Data warehousing applications, on the other hand, are mostly read 
only, and therefore typically can benefit from denormalization. Denormalization 
is a technique that involves duplicating data in one or more tables to minimize or 
eliminate time consuming joins. In these cases, adequate controls must be put in 
place to ensure that the duplicated data is always consistent in all tables to avoid 
data integrity issues.
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The E/R model basically focuses on three things, entities, attributes, and 
relationships. An entity is any category of an object in which the business is 
interested. Each entity has a corresponding business definition, which is used to 
define the boundaries of the entity — allowing you to decide whether a particular 
object belongs to that category or entity. Figure 3-2 depicts an entity called 
product.

Figure 3-2   Example E/R model showing relationships

Product is defined as any physical item that may be stocked in one or more of the 
retail stores in the company. Whether this definition is appropriate or not depends 
on the use to which the model is put. In this sense, an entity may be quite specific 
at one extreme, or very generic at the other extreme. Each entity has a number of 
attributes associated with it. An attribute is any characteristic of an entity that 
describes it and is of interest to the business.

A relationship that exists between the entities in a model describes how the 
entities interact. This interaction is usually expressed as a verb. In the example, 
the relationship between Product and Retail Store is defined as the retail store 
stocks product.

In summary, here are advantages of the E/R modeling technique:

� It eliminates redundant data, which saves storage space, and better enables 
enforcement of integrity constraints.

Note: A table is in third normal form (3NF) if each non-key column is 
independent of other non-key columns, and is dependent only on the key. 
Another much-used shorthand way of defining third normal form is to say, it is 
the key, the whole key, and nothing but the key.
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� The INSERT, UPDATE, and DELETE commands executed on a normalized 
E/R model are much faster than on a denormalized model because there are 
fewer redundant sources of the data, resulting in fewer executions.

� The E/R modeling technique helps capture the interrelationships among 
various entities for which you are designing the database. In other words, an 
E/R model is very good at representing relationships. 

A disadvantage of an E/R model is that it is not as efficient when performing very 
large queries involving multiple tables. In other words, an E/R model is good at 
INSERT, UPDATE, or DELETE processing, but not as good for SELECT 
processing. 

3.2.2  Dimensional modeling
To overcome performance issues for large queries in the data warehouse, we 
use dimensional models. The dimensional modeling approach provides a way 
to improve query performance for summary reports without affecting data 
integrity. However, that performance comes with a cost for extra storage space. 
A dimensional database generally requires much more space than its relational 
counterpart. However, with the ever decreasing costs of storage space, that cost 
is becoming less significant.

What is a dimensional model?
A dimensional model is also commonly called a star schema. This type of model 
is very popular in data warehousing because it can provide much better query 
performance, especially on very large queries, than an E/R model. However, it 
also has the major benefit of being easier to understand. It consists, typically, of 
a large table of facts (known as a fact table), with a number of other tables 
surrounding it that contain descriptive data, called dimensions. When it is drawn, 
it resembles the shape of a star, therefore the name. Figure 3-3 on page 53 
depicts an example star schema.
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Figure 3-3   A star schema or a dimensional model

The dimensional model consists of two types of tables having different 
characteristics. They are:

� Fact table
� Dimension table

The following sections provide more detail for understanding the two types of 
tables. Figure 3-4 on page 54 depicts an example of the fact table structure.

Fact table characteristics
� The fact table contains numerical values of what you measure. For example, 

a fact value of 20 might mean that 20 widgets have been sold.

� Each fact table contains the keys to associated dimension tables. These are 
called foreign keys in the fact table. 

� Fact tables typically contain a small number of columns.

� Compared to dimension tables, fact tables have a large number of rows.

� The information in a fact table has characteristics, such as:

– It is numerical and used to generate aggregates and summaries.

– Data values need to be additive, or semi-additive, to enable 
summarization of a large number of values.

– All facts in Segment 2 must refer directly to the dimension keys in 
Segment 1 of the structure, as you see in Figure 3-4 on page 54. This 
enables access to additional information from the dimension tables.

FACT

TIME

CUSTOMER

REGION

PRODUCT

Product_ID
Product_Desc

Region_ID
Country
State
City

Year_ID
Month_ID
Week_ID
Day_ID

Customer_ID
Customer_NAME
Customer_Desc

Product_ID
Customer_ID
Region_ID
Year_ID
Month_ID
Sales
Profit
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Figure 3-4   Fact table structure

– We have depicted examples of a good fact table design and a bad fact 
table design in Figure 3-5. The bad fact table contains data that does not 
follow the basic rules for fact table design. For example, the data elements 
in this table contain values that are:

• Not numeric. Therefore, the data cannot be summarized.

• Not additive. For example, the discounts and rebates are hidden in the 
unit price.

• Not directly related to the given key structure, which means they 
cannot be not additive.

Figure 3-5   Good and bad fact table

We provide a more detailed discussion about fact table design in Chapter 5, 
“Dimensional Model Design Life Cycle” on page 103. We now look at the second 
component, the dimension table characteristics.

Time Dimension 
Customer Dimension 
Product Dimension 

Promotion Dimension 
Salesperson Dimension

Extended Cost 
Extended Unit Price 

Sent Units
Total Package Weight 

Unit Weight

259 1239  169  97 75219

156   499   74  88  3599 

$15.06        $74.43           1,132      47.1          0.0436

$21.64        $95.21             304        96.5         0.0039

Segment 1 Segment 2

Dimension keys

dim_Time
dim_Customer
dim_Product
dim_Promotion

dim_Time
dim_Customer
dim_Product
dim_Promotion
dim_Salesperson
dim_StatusSalesperson 

Type Status

Unit Price 
Gross Margin

Daily Sales 

YearToDate Sales 

Last year YTD Sales

quantity sold 
extended list price 
total allowances 
total discounts 
extended net price

full additive –
gross margin can 

be computed

new dimensions
non-numeric fields

wrong granularity 
(non daily)

non-additive fields

“bad”
fact table

“good”
fact table
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Dimension table characteristics
� Dimension tables contain the details about the facts. That, as an example, 

enables the business analysts to better understand the data and their reports. 

� The dimension tables contain descriptive information about the numerical 
values in the fact table. That is, they contain the attributes of the facts. For 
example, the dimension tables for a marketing analysis application might 
include attributes such as time period, marketing region, and product type.

� Since the data in a dimension table is denormalized, it typically has a large 
number of columns. 

� The dimension tables typically contain significantly fewer rows of data than 
the fact table.

� The attributes in a dimension table are typically used as row and column 
headings in a report or query results display. For example, the textual 
descriptions on a report come from dimension attributes. Figure 3-6 depicts 
an example of this.

Figure 3-6   The textual data in the report comes from dimension attributes

Types of dimensional models
There are three basic types of dimensional models, and they are:

� Star model 
� Snowflake model
� Multi-star model

Figure 3-7 on page 56 depicts these models:

Sales
Analysis

Dimensional Model

Report Labels and Textual Data 
comes from Dimension Attributes

Month Product Employee 
$

Revenue 

January Choco-1 Amit 400

February Stanislav 1200

March Carlos 1600

Choco-4
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Figure 3-7   Types of dimensional models

In the following section, we give a brief summary of the three types of 
dimensional models:

� Star model: Star schemas have one fact table and several dimension tables. 
The dimension tables are not denormalized. 

� Snowflake model: Further normalization and expansion of the dimension 
tables in a star schema result in the implementation of a snowflake design. A 
dimension is said to be snowflaked when the low-cardinality columns in the 
dimension have been removed to separate normalized tables that then link 
back into the original dimension table. Figure 3-8 depicts this.

Figure 3-8   Snowflake schema

In this example, we expanded (snowflaked) the Product dimension by 
removing the low-cardinality elements pertaining to Family, and putting them 
in a separate Family dimension table. The Family table is linked to the Product 
dimension table by an index entry (Family_id) in both tables. From the Product 
dimension table, the Family attributes are extracted by, in this example, the 
Family Intro_date. The keys of the hierarchy (Family_Family_id) are also 
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included in the Family table. In a similar fashion, the Market dimension was 
snowflaked.

For a more detailed discussion of the snowflake schema, refer to 6.3.7, 
“Identifying dimensions that need to be snowflaked” on page 277. 

� Multi-star model: A multi-star model is a dimensional model that consists of 
multiple fact tables, joined together through dimensions. Figure 3-9 depicts 
this, showing the two fact tables that were joined, which are EDW_Sales_Fact 
and EDW_Inventory_Fact.

Figure 3-9   Multi-star model

3.3  Data warehouse architecture choices
In this section, we describe three architectural approaches for data warehousing. 
The approach, or combination of approaches, you select impact the data 
modeling requirement.

The data warehouse architecture will determine, or be determined by, the 
locations of the data warehouses and data marts themselves, and where the 
control resides. For example, the data can reside in a central location that is 
managed centrally. Alternatively, the data can reside in distributed local and/or 
remote locations that are either managed centrally or independently.
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Here we describe three architectural approaches, listed below and depicted in 
Figure 3-10: 

� Enterprise data warehouse (EDW)
� Independent data marts
� Dependent data marts

You can also use these architectural choices in combinations. The most typical 
example of which is combining the EDW and dependent data marts. In this 
instance, the data marts receive data from the EDW, rather than directly from the 
staging area. 

Figure 3-10   Various data warehouse architectures

3.3.1  Enterprise data warehouse
An enterprise data warehouse is one that will support all, or a large part, of the 
business requirement for a more fully integrated data warehousing environment 
that has a high degree of data access and usage across departments or lines of 
business. That is, the data warehouse is designed and constructed based on the 
needs of the business as a whole. Consider it a common repository for 
decision-support data that is available across the entire organization, or a large 
subset of that data. We use the term Enterprise here to reflect the scope of data 
access and usage, not the physical structure. 

Figure 3-11 on page 59 shows an architecture diagram for an enterprise data 
warehouse.

Interconnected (Dependent)
Data Marts

Enterprise (EDW)

Source
Data

Independent Data Marts
58 Dimensional Modeling: In a Business Intelligence Environment



Figure 3-11   Enterprise data warehouse architecture

This type of data warehouse is characterized as having all the data under central 
management. However, centralization does not necessarily imply that all the 
data is in one location or in one common systems environment. That is, it is 
centralized, but logically centralized rather than physically centralized. When this 
is the case, by design, it then may also be referred to as a hub and spoke 
implementation. The key point is that the environment is managed as a single 
integrated entity.

3.3.2  Independent data mart architecture
An independent data mart architecture, as the name implies, is comprised of 
standalone data marts that are controlled by particular workgroups, departments, 
or lines of business. They are typically built solely to meet the particular needs of 
that particular workgroup, department, or line of business. Although there could 
be, there typically is no connectivity with data marts in other workgroups, 
departments, or lines of business. Therefore, these data marts do not share any 
conformed dimensions and conformed facts between them.

This is one of the concerns when using an independent data mart. The data in 
each may be at a different level of currency, and the data definitions may not be 
consistent - even for data elements with the same name.

For example, let us assume that data mart#1 and data mart#2, as shown in 
Figure 3-12 on page 60, have a customer dimension. However, since they do not 
share conformed dimensions, it means that these two data marts must each 
implement their own version of a customer dimension. It is these types of 
decisions that can lead, for example, to inconsistent and non-current sources of 

Note: The enterprise data warehouse may also be called a Hub and Spoke 
data warehouse implementation if the control is logically centralized even if the 
data is spread out and physically distributed, such as the EDW and data 
marts, as shown in Figure 3-11.
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data on independent data marts in an enterprise. And this can result in 
inconsistent and non-current sources of data that can lead to inaccurate decision 
making

Figure 3-12   Independent data warehouse architecture

Independent data marts are primary candidates for data mart consolidation for 
companies around the world today. The proliferation of such independent data 
marts has resulted in issues such as:

� Increased hardware and software costs for the numerous data marts

� Increased resource requirements for support and maintenance

� Development of many extract, transform, and load (ETL) processes

� Many redundant and inconsistent implementations of the same data

� Lack of a common data model, and common data definitions, leading to 
inconsistent and inaccurate analyses and reports

� Time spent, and delays encountered, while deciding what data can be used, 
and for what purpose

� Concern and risk of making decisions based on data that may not be 
accurate, consistent, or current

� No data integration or consistency across the data marts

� Inconsistent reports due to the different levels of data currency stemming 
from differing update cycles; and worse yet, data from differing data sources

� Many heterogeneous hardware platforms and software environments that 
were implemented, because of cost, available applications, or personal 
preference, resulting in even more inconsistency and lack of integration
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For more detailed information about data mart consolidation specific initiatives, 
refer to the following IBM Redbook:

� Data Mart Consolidation: Getting Control of Your Enterprise Information, 
SG24-6653

3.3.3  Dependent data mart architecture
An interconnected data mart architecture is basically a distributed 
implementation. Although separate data marts are implemented in a particular 
workgroup, department, or line of business, they are integrated, or 
interconnected, to provide a more global view of the data. These data marts are 
connected to each other using, for example, conformed dimensions and 
conformed facts. For example, look at Figure 3-13. Assume that data mart#1 and 
data mart#2 both use a customer dimension. When we say that these data marts 
share conformed dimensions, it means that the two data marts implement the 
same common version of a customer dimension. Also, each of these data marts 
typically has a common staging area. At the highest level of integration, the 
combination of all dependent data marts could be thought of as a distributed 
enterprise data warehouse. 

Figure 3-13 shows the architecture for dependent data marts. In the 
implementation previously mentioned, where the EDW and dependent data mart 
architectures are combined, the Staging Area is basically replaced by the EDW.

Figure 3-13   Dependent data mart architecture

3.4  Data models and data warehousing architectures
Now that we have an understanding of the various data warehouse architectures, 
let us spend time investigating the components of each of the implementations. 
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The primary focus here is to understand how the data models are used jointly or 
independently to design these data warehouse architectures. 

3.4.1  Enterprise data warehouse
Figure 3-14 shows the primary components of the enterprise data warehousing 
architecture. It also shows the type of data model (E/R or Dimensional) on which 
each of the components is based.

Figure 3-14   Data models in the enterprise data warehousing environment

Source systems
The source systems are the operational databases of the enterprise. As such, 
they are typically in 3NF and represented by E/R models. However, they can also 
be dimensional models or other file structures. They are typically created and 
used by the applications that capture the transactions of the business. In most 
cases, they are highly normalized for fast performance on transactions, using the 
typical insert, update, and delete processing. The priorities of a 
transaction-oriented source system are performance and high availability. 

Data staging area
The staging area is the place where the extracted and transformed data is placed 
in preparation for being loaded into the data warehouse. As you see in 
Figure 3-14, the data staging area is primarily in 3NF, and represented by an E/R 
model. However, the staging area may also contain denormalized models. 

Enterprise data warehouse
As shown in Figure 3-14, the EDW is primarily in 3NF and based on an E/R data 
model. Key here is that we differentiate between the data warehouse and the 
data warehousing environment. That is, within the data warehousing 
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environment, there can also be dimensional models - in the form of dependent 
data marts. The analysts can query the data warehouse directly, or through a 
data mart which is populated from the data warehouse. The latter may improve 
the ad hoc query performance and availability depending on the configuration.

Data mart
The data marts in the enterprise data warehousing environment are based on a 
dimensional model, and could be any of the following types of schema:

� Star 
� Snowflake 
� Multi-Star 

And, those data marts employ conformed dimensions and conformed facts.

3.4.2  Independent data mart architecture
Figure 3-15 shows the primary components in the independent data mart 
architecture. It also shows the type of data model (E/R or Dimensional) upon 
which each component is based.

Figure 3-15   Data models in an independent data mart architecture
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The descriptions of the components of the independent data mart architecture 
are as follows:

Source systems
The source systems are typically in 3NF and based on an E/R model. However, 
they can include dimensional models and other file structures. They are the data 
stores used by the applications that capture the transactions of the business. The 
source systems are highly normalized for fast performance on transactions, 
using the typical insert, update, and delete processing. The priorities of a 
transaction-oriented source system are performance and high availability.

Data staging area
The staging area is the place where the extracted and transformed data is placed 
in preparation for being loaded into the data warehouse. As shown in Figure 3-15 
on page 63, the data staging area is primarily in 3NF, and represented by an E/R 
model. However, the staging area may also contain denormalized models. In 
case of independent data warehouse architecture, there are separate staging 
areas for each data mart and therefore no sharing of data between these 
disparate staging areas.

Independent data marts
As shown in Figure 3-15 on page 63, the data marts are based on a dimensional 
model which can be any of the following types of schemas:

� Star 
� Snowflake 
� Multi-Star 

The data marts in the independent data warehouse are not connected to each 
other because they are not designed using conformed dimensions and 
conformed facts. Here again, this can result in inconsistent and old, out of date 
sources of data that can lead to inaccurate decision making.

3.4.3  Dependent data mart architecture
The dependent data mart, as the name implies, is dependent on something. And, 
that something is the enterprise data warehouse.

That means that the data for the dependent data mart comes from the EDW. 
Therefore, the data loaded into the dependent data mart is already transformed, 
cleansed, and consistent. The primary concern when using a data mart is the 
currency of the data, or how fresh it is. That is, what is the date and time of the 
last extract of data from the EDW that was loaded into the dependent data mart.
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And, when data is used from multiple data marts, care must be taken to assure 
that the freshness of the data is consistent across them.

Figure 3-16 on page 65 shows the components of a dependent data mart 
architecture, and the type of data model upon which it is based. 

Figure 3-16   Data models in a dependent data mart architecture

The descriptions of the components of a dependent data mart architecture are as 
follows:

Source systems
The source system for the dependent data mart is the EDW. 

Data staging area
Since data is coming from the EDW, there is no requirement for a data staging 
area. 

Dependent data marts
The data marts are based on a dimensional model. The dimensional model can 
be any of the following schemas:

� Star 
� Snowflake
� Multi-Star

The data marts are based on conformed dimensions and conformed facts. 
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3.5  Data modeling life cycle
In this section, we describe a data modeling life cycle. It is a straight forward 
process of transforming the business requirements to fulfill the objectives for 
storing, maintaining, and accessing the data within IT systems. The result is a 
logical and physical data model for an enterprise data warehouse. 

We describe a specific life cycle to design a dimensional model (star schema) in 
Chapter 5, “Dimensional Model Design Life Cycle” on page 103.

3.5.1  Modeling components
The goal of the data modeling life cycle is primarily the creation of a storage area 
for the business data. That area comes from the logical and physical data 
modeling stages, as depicted in Figure 3-17.

Figure 3-17   A generic data modeling life cycle

In the context of data warehousing, data modeling is a critical activity. The 
complexity of the business and its needs for business intelligence are a real 
challenge for data modelers. We start now with a brief overview of the life cycle 
components:

� Logical data modeling: This component defines a network of entities and 
relationships representing the business information structures and rules. The 
entities are representations of business terms of relevance to the business, 
such as: involved party, location, product, transaction, and event. The 
relationships are representations of associations between entities. An entity 
characterizes attributes, such as name, description, cost, sale price, and 
business code. Figure 3-18 on page 67 is an example of a logical model.
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Figure 3-18   A logical model representation

� Physical data modeling: This component maps the logical data model to the 
target database management system (DBMS) in a manner that meets the 
system performance and storage volume requirements. The physical 
database design converts the logical data entities to physical storage (such 
as tables and proprietary storage) of the target DBMS or secondary storage 
medium. The physical database design is composed of the Data Definition 
Language (DDL) that implements the database, an information model 
representing the physical structures and data elements making up the 
database, and entries in the data dictionary documenting the structures and 
elements of the design. An example of the DDL for the table named 
transaction (TXN) is in Example 3-1. 

Example 3-1   Sample DDL

create table TXN
( TXN_ID               INTEGER                not null,
PPN_DTM              TIMESTAMP,
SRC_STM_ID           INTEGER,
UNQ_ID_SRC_STM       CHAR(64),
MSR_PRD_ID           INTEGER,
TXN_TP_ID            INTEGER,
ENVT_TP_ID           INTEGER,
UOM_ID               INTEGER,
TXN_VAL_DT           DATE,
TXN_BOOK_DT          DATE,
NET_CASH_FLOW_AMT    NUMERIC(14,2),

Involved Party

+  (PK) PK_Involved Party()

Involved Party

* PK Involved Party ID:
Name:
Description:
Organization:
Address:

Involved Party

+ (PK) PK_Product()

Product

* PK Product ID:
Name:
Description:
Classification:

cd Logical Model

Involved Party

+ (PK) PK_Transaction()

Transaction

* PK Transaction ID:
Involved Party ID:
Product ID:
Transaction Type:
Net Cash Flow Amount
 Chapter 3. Data modeling: The organizing structure 67



constraint P_TXNXPK primary key 
(TXN_ID)

3.5.2  Data warehousing
In the 3.3, “Data warehouse architecture choices” on page 57, we describe data 
warehousing concepts and possible architectures. In Figure 3-19, we depict an 
example enterprise data warehouse, where the arrows show the data flow 
among components. 

Figure 3-19   Enterprise data warehouse environment

The DW components differ not only by content of data but also by the way they 
store the data and by whom it can be accessed. 

� Staging area: For handling data extracted from source systems. There can be 
data transformations at this point and/or as the data is loaded into the data 
warehouse. The structure of the staging area depends on the approach and 
tools used for the extract, transform, and load (ETL) processes. The data 
model design affects not only performance, but also scalability and ability to 
process new data without recreating the entire model. 

� Data warehouse: This is the area, also called the system of record (SOR), 
that contains the history data in 3NF and is typically not accessed for query 
and analysis. Use it for populating the summary area, analytical areas, and 
the dependent data marts.

� Summary area: This area contains aggregations. Structures are usually 
derived from the data warehouse where one or more attributes are at the 
higher grain (less detail) than in the data warehouse. These are constructed 
for high performance data analysis where low level detail is not required.
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� Analytical area: Contains multidimensional (MD) structures, such as the star 
schema, snowflakes, or multi-star schemas, constructed for high performance 
data analysis.

3.5.3  Conceptual design 
The conceptual design represents an early basis for design reviews, including 
confirmation that the business requirements are sufficiently described and that 
there is an available solution. From this point starts the logical data modeling 
which transforms the business requirements into the context of the 
data/information necessary to be stored, accessed, and maintained.

3.5.4  Logical data modeling
In this section, we focus on the modeling of data warehouse. First we look at the 
logical data model. The primary purpose of logical data modeling is to document 
the business information structures, processes, rules, and relationships by a 
single view - the logical data model. 

The logical data model helps to address the following:

� Validation of the functional application model against business requirements

� The product and implementation independent requirements for the physical 
database design (Physical Data Modeling)

� Clear and unique identification of all business entities in the system along with 
their relations, by the logical model

Design steps in logical modeling 
The design activity of logical data modeling of the data warehouse consists of the 
following steps:

1. Identification of entities, attributes, and relationships 
2. Normalization and identification of entities
3. Merging the ETL functional model with the logical data model

Note: What happens if we do not have the logical data model?

Without the logical data model, the stored business information is described 
by a functional model or application (such as ETL or OLAP). Without the 
logical data model, there is no single view of all data, and data normalization is 
impossible. In this case, the physical data model has to be designed from a 
functional model. This will potentially cause performance problems, and data 
inconsistency and redundancies, which can result in an inefficient physical 
design.
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4. Validation of the logical model against business requirements 

We now discuss each of the tasks in detail. 

One - Identification of entities, attributes, and relationships
This step consists of the following activities:

1. Review available documentation for the project, including the scope of the 
project and information about the source systems from where data is loaded. 
Look for business requirements, process models, profiles, architectural 
design, and data models.

2. Create a list of nouns representing general categories of information required 
to be stored in the data warehouse. Review this entity list with subject matter 
experts. The nouns should represent standalone concepts rather than 
attributes or subsets of something larger.

3. From the noun list, identify the entities. An entity is a generalization of the 
concepts, involved parties, products, arrangements, locations, or events 
about which the system store informations. Entities may occur directly in the 
list or may be names for collections of nouns in the list. Each entity name 
must be unique and meaningful. Nouns representing out-of-scope concepts 
and implementation concepts are not logical data model entities.

4. Once each entity has been defined, determine its relationships with other 
entities. Each entity may have multiple relationships with other entities. 
However, a single relationship is only held between two entities. When 
analyzing the relationships between entities, it is important that the 
relationships are analyzed from the context of the business view. Each 
relationship is considered bidirectional and granted names for each side of 
the relationship.

5. Identify the associated cardinalities (numbers of occurrences of one entity 
relative to another entity) and describe it. Cardinality refers to the minimum 
and maximum numbers of occurrences implied by the existence of two 
entities participating in a relationship.

6. Identify the attributes or characteristics of the entities that are relevant to the 
business, and the primary key for each entity. The primary key is made up of 
is the subset of attributes that uniquely identify each entity. Attributes must be 
atomic. That is, they cannot be further decomposed to simpler elements.

7. Relationships, cardinalities, and inter-attribute dependencies are usually 
derived from business rules.

8. For each entity and attribute record, define a text description in the data 
dictionary that clearly represents the element from a business point of view.
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Two - Normalization and identification of entities
Normalizing the model means removing structural redundancies and 
inconsistencies. The recommended approach is to proceed in taking the model 
to: first normal form, then second normal form, and finally to third normal form. 
The third normal form is used for the data warehouse. This is where necessary 
detail and historical data is kept, typically in an E/R model.

The primary reason for a data warehouse is to enable data query and analysis to 
provide information for decision making. However, as the volume of data grows in 
an E/R model, performance issues may arise. Thus, one of the reasons for the 
dimensional model.

Dimensional modeling is a technique that can provide the required performance 
for query and analysis on huge volumes of data. It has since become the defacto 
technique for data warehousing analytics, and that is why it is the primary subject 
of this redbook. There is more detailed information about dimensional modeling 
in Chapter 5, “Dimensional Model Design Life Cycle” on page 103.

To prepare for dimensional modeling and analytics, the data in the data 
warehouse must be formatted properly. The following list briefly describes 
activities involved in this formatting:

1. Repeating Groups: The repeating attribute groups must be removed because 
they are indicative of the existence of another entity. Each set is an instance 
of the new entity and must contain the primary key of the original entity as a 
foreign key. After these sets are removed and made separate entities, the 
model is said to be in first normal form.

2. Functional dependencies: Any partial functional dependencies among 
attributes in the entities must be removed. In entities that have primary keys 
comprised of more than one attribute, non-key attributes may be a function of 
the entire key or of part of the key. In the former case, the attribute is said to 
be fully functionally dependent. In the latter case, the attribute is said to be 
partially functionally dependent. Partially functionally dependent attributes are 
indicative of the existence of another entity and should be removed from the 
original entity. The primary key of the new entity is that part of the primary key 
of the original entity that was involved in the partial dependence. At this point, 
the model is said to be in second normal form.

3. Transitive dependencies: Transitive dependencies among attributes in the 
entities must be removed. Mutually dependent non-key attributes are 
indicative of the existence of another entity. One of the dependent attributes 
is said to be dependent on the primary key of the original entity. The other 
mutually dependent attributes are said to be transitively dependent on the 
primary key. The dependent attribute is left in the original entity as a foreign 
key. The transitively dependent attributes are removed. A new entity is 
formed whose primary key is the dependent attribute in the original entity and 
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whose other attributes are the transitively dependent attributes of the original 
entity. The model is now said to be in third normal form.

4. Primary key resolution: Instances where multiple entities have the same 
primary key and these instances must be resolved. During the normalization 
process, it may be found that multiple entities have the same primary keys. 
These entities should only be merged if all the joined attributes are valid for all 
instances of every entity. If this is not the case, a super/subtype structure 
should be developed where the shared attributes are placed in the super-type 
and the unique attributes are in separate subtypes.

Three - Merging the ETL functional model with the logical model 
In this step, we do the following:

1. Entities in the logical data model should be mappable to source systems.

2. Attributes in the entities are to be created, read, updated, and deleted by data 
flows in the ETL functional model and analytic applications.

3. The processes of the ETL functional model should maintain the relationships 
and cardinalities of the E/R model and the values of the attributes.

Four - Validation of the logical model against business requirements 
Consider the following points for validation and verification of the data model:

1. Each entity should represent an involved party, location, product, transaction, 
or event relevant to the business.

2. The logical data model should include all information the data warehouse 
needs to store about the business.

3. Each entity should have a name, a primary key, and one or more attributes, 
and enter into one or more relationships with other entities.

4. Each relationship should have correct cardinalities that reflect the needs of 
the business.

5. Each entity should be properly normalized.

6. Each entity and attribute should be accounted for in the data warehouse, and 
related to functions or processes such as ETL, real-time DW, and DW 
housekeeping.
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3.5.5  Physical data modeling
In this section, we focus on physical data modeling of the main storage of the 
data warehouse. The data warehouse provides a reliable single view of the data 
at the required level of detail, along with the necessary history data for the 
enterprise. Data modeling for the analytical area (dimensional model) or the 
summary area (see Figure 3-19 on page 68) is discussed in more detail in 
Chapter 5, “Dimensional Model Design Life Cycle” on page 103.

Introduction to physical modeling
The objective of physical data modeling is the mapping of the logical data model 
to the physical structures of the RDBMS system hosting the data warehouse. 
This involves defining physical RDBMS structures, such as tables and data types 
to use when storing the data. It may also involve the definition of new data 
structures for enhancing query performance. However, you must do it without 
changing the meaning of the logical data model schema.

Note: Important guidelines for developing the model for the DW are:

� Focus on staying within the scope of the data warehouse system being 
developed.

� Use any existing data models that you have as a starting point. However, 
do not just accept it as is. If required, modify it and enhance it, so that it 
provides an accurate representation of business data requirements.

� The high-level data model should include representation for potential future 
data and relationships. This requires good knowledge of company plans for 
the future.

� It is often useful to first assemble a draft entity relationship diagram early 
after creation of the noun list and then review it with client staff through 
successive interviews or group sessions. By doing so, review sessions will 
have more focus. Following the initial first draft, continuous client 
involvement in data model development is critical for success.

Note: What happens if there is no physical database design?

� We generate DDL from the logical data model.

� The final database is fully normalized without additional tables or attributes 
for improving performance.
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Other important factors to consider:
There are important factors to consider while designing the physical model. For 
example:

� You need tools for physical data modeling, such as:

– Case tools for maintaining the physical data model (as well as the logical 
data model)

– Database performance tools 

– Meta data management tools

� Scalability of the design, and the physical RDBMS 

� Queries, ETL, and other applications that use the data warehouse

� Use of an abstracted data model for performance 

� Operation/Maintenance of DW (housekeeping)

Physical design activities for the data warehouse
We divide the physical design activity for the data warehouse into the following 
steps:

One - Physical modeling of entities and attributes
In this phase, we do the following:

1. For each entity in the logical data model, we define an RDBMS table. We 
document this activity and assign the name compatible with the common 
DBMS and according to your company naming convention.

2. For each attribute in the entity, we identify a column and assign the name 
compatible with the common DBMS naming syntax. We define RDBMS 
specific data types, such as character, varchar, integer, float, and decimal. 

3. We define Primary and Foreign keys of the entities to the tables.

Note: How much does physical data modeling in OLTP differ from physical 
modeling for the data warehouse? The answer is, not much. At the conceptual 
model level, it differs primarily in performance design. The key difference is 
that in OLTP, we are primarily concerned with data and transaction volumes, 
where with the DW we must focus on load performance, for population of the 
analytical areas and the summary tables by batch/real-time applications, and 
on performance of the analytical queries.

Note: Before starting any data warehousing project, it is a good practice to 
establish within the company a common naming convention for business and 
technical objects, along with recommended data types in the data directory.
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Two - Build the DDL
The following is a list of activities for this step:

1. Create target database.
2. Define the target database vendor.
3. Connect to target database.
4. Generate DDL by a preferred Case tool.
5. Implement the DDL code using Case tool or a script. 

Three - Performance design and tuning
In this step, we comment briefly about how to proceed with the performance 
design and tuning for the data warehouse. We discuss tuning the population of 
the E/R, rather than optimizing query performance against the data warehouse. 
Query performance against the data warehouse is typically supported by using 
summary tables, analytical data marts, and derived data marts, as we have seen 
in Figure 3-19 on page 68. 

The two primary processes for populating the E/R model of the warehouse are 
batch and real time. In batch mode, the E/R model is typically populated using 
custom applications, ETL tools, or native database utilities that deliver good 
performance. It is much the same with real time, but with modifications.

In a real-time environment, you typically must change process models. The 
objective is to move to more of a continuous load/update scenario. It cannot be 
achieved by simply moving data faster. The processes must be changed to 
enable the data to be made available faster. New techniques should also be 
considered. For example, rather than the typical ETL process many are moving 
to an ELT process. That is, the data is extracted and loaded. Then, the required 
transformations are performed. This can enable a performance improvement.

Four - Verification of physical data modeling process
At the end of physical design, check the following list for completed activities:

1. Generated physical model DDL script should properly define the physical 
structures along with performance enhancements.

2. Good documentation of the physical design should exist in the case tool used.

Note: Performance is dependent on the physical data structures of RDBMS. 
Altering or adding more appropriate physical structures may possibly improve 
the performance of query/extraction/replication. However, it may also increase 
the load time of the data warehouse. Performance tuning is a cost 
minimization issue. For example, performance can always be improved by 
adding more CPU and I/O resources. But the objective is to find a compromise 
between acceptable performance and total cost of the system.
 Chapter 3. Data modeling: The organizing structure 75



3. Each entity of logical design should represent a physical table with the 
appropriate attributes and relations. 

4. Each relationship should describe correct cardinalities (one to one, one to n, 
and n to n).

5. Each entity and attribute should be properly described in the data dictionary.

6. All capacity estimates should be validated.

In this section, we have discussed the data modeling techniques for data 
warehousing. In Chapter 5, “Dimensional Model Design Life Cycle” on page 103, 
we discuss in detail the technique for designing a dimensional model. 
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Chapter 4. Data analysis techniques

In this chapter, we focus on data analysis techniques used in data warehousing. 
This is, after all, the primary reason for a data warehouse. We do not intend this 
to be an all-inclusive treatise on the subject, but an overview so you have a good 
general understanding.

We discuss the following topics:

� The information pyramid and associated reporting that you can perform
� BI reporting tool architectures
� Classification of BI users based on analytical needs
� Query and reporting
� Multidimensional analysis techniques:

– Slice and dice
– Pivoting
– Drill-up, drill-down, and drill-across
– Roll-up and roll-down

� Query and reporting tools

4
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4.1  Information pyramid
Every enterprise produces regulatory, statutory, and internal reports on a regular 
basis. The reports are predefined documents composed from tables, summaries, 
or charts, containing business information consisting of measures and tables 
with a description of columns and rows. The target users are auditors, 
governmental regulatory institutions, shareholders, internal users from areas 
such as finance, or from the top management of a company. This says that there 
is a need for information in the form of analytics, dashboards, queries, and 
reports by all levels of people in an organization. The focus of the IT department 
is to provide for the analysis and business reporting needs of all company 
decision makers. 

Gone are the days when you could plan and manage business operations 
effectively by using monthly batch reports, and when IT organizations had 
months to implement new applications. Today companies need to deploy 
informational applications rapidly, and provide business users with easy and fast 
access to business information that reflects the rapidly changing business 
environment. In short, the pressure on the IT department to deliver the 
information to the business continues to dramatically increase.

In this section, we focus on different information environments in the 
organization, and discuss how to accomplish data analysis and reporting from 
each of them.

4.1.1  The information environment
Consider the information pyramid in Figure 4-1 on page 79. The information 
pyramid depicts several environments or levels within an organization where the 
information may reside, in what form, and for what duration. Traditionally, IT has 
seen these levels of data as separate, with the requirement of copying data from 
one level to another for appropriate usage. 

However, these different levels should be thought of simply as different views of 
the same data, although individual users may only focus on a particular level to 
perform their specific job. But, to emphasize this difference in perspective, we 
have named these levels as floors of data. While data copying may continue 
between the floors, this approach is no longer the only one possible.

The data on the different floors of the pyramid does have different 
characteristics, such as volumes, structures, and access methods. Because of 
that we can choose the best way to physically instantiate the data. And the 
pyramid emphasizes that today the requirement is to access data from all floors 
within a single activity or process.
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We now describe each floor in a bit more detail, along with the part it plays in the 
reporting environment. From this discussion, we can see the advantages, 
disadvantages, and how the decision-making processes should be architected. 

Figure 4-1   Information pyramid

The concept behind the information pyramid is to map the delivery of data needs 
to your applications and organization needs. This is to help determine the data 
flow and delivery requirements. We call this right time data delivery. The lower 
floors of the architecture offer the freshest, and most detailed data. This is the 
source of data for making operational decisions on a day to day basis. As you 
move up the floors, the data becomes more summarized and focused for specific 
types of analysis and applications. For example in floors 3, 4, and 5, the data is 
used for more strategic analysis. 

Now we take a look at each of the floors and discuss them in detail.

Floor 0 
This floor represents data from the operational or source systems. The data in 
the source systems is typically in 3NF and represented in an E/R model. The 
source systems are the applications that capture the transactions of the 
business. The data is highly normalized so that the transactions performing 
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inserts, updates, and deletes can be executed quickly. The primary requirements 
for these source systems are transactional performance and high availability. 
The source systems are periodically purged, so they typically store relatively little 
history data. With source systems, you can make operational, day to day 
decisions, but they are not formatted or architected for long-term reporting 
solutions.

The advantages of querying from the source systems (floor 0) are:

� No need for additional hardware.
� Quick start.
� Less difficult to accomplish.

The disadvantages of querying from the source systems (floor 0) are:

� They are not optimized for query processing.

� Executing queries or reports against a source system can negatively impact 
performance of the operational transactions.

� Insufficient history data for general query and reporting.

� They need new data structures (such as summary tables) created and 
maintained.

Floor 1
This floor represents the staging area and the denormalized source systems. 
The staging area is not appropriate for reporting because the data in the staging 
area is prepared for consumption by the business users. On the other hand, a 
denormalized source system, which is also often part of the floor 1, may be used 
for limited reporting. 

The advantages of querying from floor 1 are:

� Reporting can be obtained from the denormalized source systems. 

The disadvantages of querying from floor 1 are:

� Data in the staging area cannot be used for reporting purposes because it 
may not have been cleansed or transformed, and therefore, it is not ready to 
be used.

Note: Floors 1-5 can broadly be mapped to the layers in existing data 
warehouse architectures. These layers are based on the same fundamental 
data characteristics that provided the basis for separating the different types of 
data when defining the architecture of the data warehouse.
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Floor 2
As shown in Figure 4-1 on page 79, floor 2 represents the 3NF data warehouse 
and associated reference tables. In Figure 4-2, we show an architecture where 
users are querying a data warehouse designed in a 3NF E/R model. A 
normalized database is typically difficult for business users to understand 
because of the number of tables and the large number of relationships among 
them. 

Figure 4-2   Querying a data warehouse

The advantages of querying from floor 2 are:

� There are single sources of data.
� Floor 2 contains history and detail data.
� Floor 2 is optimized for storage of large volumes of data.

The disadvantages of querying from floor 2 (the data warehouse) are :

� There is no structure for dimensional analysis, making it difficult to 
understand the data relationships.

� Complex project, difficult to deliver.

Floor 3
Floor 3 represents summarized data, which is created directly from the 
warehouse. 

The advantages of querying from the summarized warehouse are:

� The history data is easily available.
� It is optimized for a set of data.

The disadvantages of querying from the data warehouse are:
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� You may need to create summaries for several business processes, and 
maintaining such summaries becomes a maintenance issue.

Floor 4
On floor 4, there are dimensional data marts stored in relational databases, and 
data cubes.

The advantages of querying from the dimensional data mart or cubes are:

� History data is easily available.
� Highly optimized data is available for each business process. 
� Queries are easy to understand by the business users.

The disadvantages of querying from the dimensional data mart or cubes are:

� You may need to create and maintain several dimensional models for each 
business process. This adds to the overall cost of the data warehouse.

� For querying cubes, you may need to purchase specialized software.

� For creating and storing cubes, you need additional software.

� There will be additional storage requirements.

� The additional effort to populate data marts.

Figure 4-3   Querying from a dimensional model

Floor 5
Floor 5 represents the reporting environment and infrastructure that is used for 
making static reports, dynamic ad hoc reports, and dashboards. It is the delivery 
platform that supports all the reporting needs.
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4.2  BI reporting tool architectures
The different data analysis tools for reporting typically fall into two main 
architectures as shown in Figure 4-4. The architectures are:

� 2-tier: In this architecture, the BI reporting tool is installed on the client 
machines and these tools (clients) directly access the data warehouse or the 
data marts.

� 3-tier: In this architecture, the BI reporting server software is installed on a 
server machine. All the clients access the data warehouse or the data marts 
by using a browser. No special tool must be installed on the clients.

Figure 4-4   BI reporting tool architectures

4.3  Types of BI users 
When buying BI reporting tools, it is important to match them with the type of 
user who uses them.  Each product tends to excel at certain tasks, but may lag in 
others. This typically means that the client ends up with 3-4 BI tools to meet the 
requirements. Then there is a need for additional skills, education, maintenance, 
and licenses, which are all additional expenses. Soon there is a movement to 
consolidate those tools to save money.  In this case, you must take care to make 
sure the business users still have the specific capabilities they need to do their 
jobs. Figure 4-5 on page 84 shows classifications of users according to their BI 
reporting needs.
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Figure 4-5   BI user types and their requirements

Based on the analytical needs, we classify the BI users within an organization as 
follows:

� Enterprise users, consumers, and partners: These users have the lowest 
reporting needs. These users typically access data in the form of portlets or 
company Web sites which have been given extranet access.

� Casual users: Casual users mainly use static reports and portlets. They 
require ease of use, and typically prefer to work with standalone applications, 
such as spreadsheets.

� Business users: Now we are getting to users who typically belong to middle 
and executive management. They are more interested in dashboards and 
other static types of reports. Business users are involved with both tactical 
and strategic decision making processes.

� Power users: These users require higher functionality compared with other 
user types. They understand the environment, are familiar with the data 
analysis tools, and are comfortable with complex applications.

� IT users: IT users are responsible for creating the reports for the business. IT 
users work with advanced reporting applications, such as software 
development kits (SDK) and data mining software. They understand the IT 
environment and are comfortable interacting directly with several 
heterogeneous data sources.
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4.4  Query and reporting
Query analysis and reporting are the processes for posing questions to answer, 
retrieving relevant data from the data warehouse, transforming it into the 
appropriate context, and displaying it in a readable format. Query analysis and 
reporting are primarily driven by analysts who are quite familiar with posing such 
queries to determine the answers to their questions. 

Traditionally, queries have dealt with two dimensions, or two factors, at a time. 
For example, you might ask, "How much of that product has been sold this 
week?" Subsequent queries would then be posed to perhaps determine how 
much of the product was sold by a particular store. Figure 4-6 depicts the 
process flow in query and reporting. 

Query definition is the process of taking a business question or hypothesis and 
translating it into a query format that can be used by a particular decision support 
tool. When the query is executed, the tool generates the appropriate language 
commands to access and retrieve the requested data, which is returned in what 
is typically called an answer set. The data analyst then performs the required 
calculations and manipulations on the answer set to achieve the desired results. 
Those results are then formatted to fit into a display or report template that has 
been selected for ease of understanding by the user. This template could consist 
of combinations of text, graphic images, video, and audio. Finally, the report is 
delivered to the user on the desired output medium, which could be printed on 
paper, visualized on a computer display device, or presented audibly.

Figure 4-6   Process of querying and reporting

Users are primarily interested in processing numeric values, which they use to 
analyze the behavior of business processes, such as sales revenue and 
shipment quantities. They may also calculate, or investigate, quality measures 
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such as customer satisfaction rates, delays in the business processes, and late 
or wrong shipments. They might also analyze the effects of business 
transactions or events, analyze trends, or extrapolate their predictions for the 
future. Often the data displayed will cause the user to formulate another query to 
clarify the answer set or gather more detailed information. This process 
continues until the desired results are reached.

A more detailed discussion on different types of reporting and querying tools in 
available in 4.6, “Query and reporting tools” on page 94.

4.5  Multidimensional analysis techniques
Multidimensional analysis has become a popular way to extend the capabilities 
of query and reporting. That is, rather than submitting multiple queries, data is 
structured to enable fast and easy access to answers to the questions that users 
typically ask. For example, the data would be structured to include answers to 
the question, "How much of each of our products was sold on a particular day, by 
a particular salesperson, in a particular store?" Each separate part of that query 
is called a dimension. By precalculating answers to each subquery within the 
larger context, many answers can be readily available because the results have 
been precalculated for each query; they are simply accessed and displayed. For 
example, by having the results to the above query, one would automatically have 
the answer to any of the subqueries. That is, we would already know the answer 
to the subquery, "How much of a particular product was sold by a particular 
salesperson?" Having the data categorized by these different factors, or 
dimensions, makes it easier to understand, particularly by business-oriented 
users of the data. Dimensions can have individual entities, or a hierarchy of 
entities, such as region, store, and department. 

Multidimensional analysis enables users to look at a large number of 
interdependent factors involved in a business problem and to view the data in 
complex relationships. Users are interested in exploring the data at different 
levels of detail, which is determined dynamically. The complex relationships can 
be analyzed through an iterative process that includes drilling down to lower 
levels of detail or rolling up to higher levels of summarization and aggregation.

Figure 4-7 on page 87 demonstrates that the user can start by viewing the total 
sales for the organization, then drill-down to view the sales by continent, region, 
country, and finally by customer. Or, the user could start at customer and roll-up 
through the different levels to finally reach total sales. Pivoting in the data can 
also be used. This is a data analysis operation where the user takes a different 
viewpoint than is typical on the results of the analysis, changing the way the 
dimensions are arranged in the result. Like query and reporting, multidimensional 
analysis continues until no more drilling down or rolling up is performed.
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Figure 4-7   Drill-down and roll-up analysis

Multidimensional analysis enables you to look at the business problem by large 
number of interdependent factors describing the matter. In other words, 
multidimensional analysis enables you to view the information at different levels 
of detail or to analyze complex relationships. 

The following are multidimensional techniques that we discuss in more detail:

� Slice and dice
� Pivoting
� Drill-down, drill-up, and drill-across
� Roll-down and roll-up 

4.5.1  Slice and dice
We start by discussing slice and dice analysis as individual activities.

Slice
The term slice in multidimensional terminology is used to define a member or a 
group of members that are separated (from ALL other dimensions) and then 
evaluated across all the dimensions. A member of a dimension means a value 
inside a column. Slicing is slightly difficult to understand on a two-dimensional 
paper. In order to understand the slicing concept, consider a dimensional model 
example. Assume that we have only three dimensions named product, store, 
and date in a simple dimensional model. In this simple dimensional model, we 
just have one fact table with a fact called sales.
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Assume that we isolate three members from the product dimension. The three 
members we isolated for the product dimension are soda, milk, and juice. This is 
shown in Figure 4-8. If we measure the SUM of sales quantity for ALL stores and 
for ALL dates across one or more members of one dimension (product in our 
case), then this concept is called slicing. The arrow in Figure 4-8 shows that the 
sum is across all dates and all stores.

This slice of the product dimension lets us to select our concerned members 
(soda, milk, and juice) from the product dimension. The slicing of the members 
allows us to focus only on these three members across all other dimensions. 
This concept is called slicing.

Figure 4-8   Slice for product

The slice in Figure 4-8 shows that soda generates the smallest sales amount, 
milk second, and juice third.

Dice
The dicing concept means that you put multiple members from a dimension on 
an axis and then put multiple members from a different dimension on another 
axis. This allows you to view the interrelationship of members from different 
dimensions.

Dicing is analysis of interrelationships among different dimensions or their 
members. Figure 4-9 on page 89 and Figure 4-10 on page 89 show examples of 
dicing.

In Figure 4-9 on page 89, we see multiple members listed vertically for the store 
dimension in one axis. These members are CA, OR, and LA. Similarly, we have 
multiple members for the date dimension which are listed horizontally. We are 
able to view the interrelationship of members from different dimensions. In other 

Note: When you slice, you choose one or more members of a dimension and 
consolidate (or summarize) across all other dimensions (in our example, the 
other dimensions were store and date.)

(For ALL Stores and Dates)

Sales in USDProduct

Soda
Milk
Juice

Total

2,530
3,858

15,396

21,784
88 Dimensional Modeling: In a Business Intelligence Environment



words, we are able to see the relationship between CA and dates 1/1/2005, 
1/2/2005, 1/3/2005, and vice versa.

Figure 4-9   Dice for store and date

Another example of dicing is shown in Figure 4-10. 

Figure 4-10   Dice of store and product dimension

In this example, we can see the interrelationship between the members of the 
store and product dimensions. Here we analyze:

� How each store contributes to total sales amounts for each product (Soda, 
Milk, and Juice).

� How a particular product contributes to total sales for each store location.

Note: You dice when you choose one or more members of same dimension 
on one axis and on the other axis you choose a member or members from 
another dimension. Now you can analyze interrelationships of those 
dimensions.
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4.5.2  Pivoting
Pivoting in multidimensional modeling means exchanging rows with columns 
and vice versa. Figure 4-11 on page 90 shows an example of pivoting. We 
exchange the store rows with columns of the product dimension members. It is 
simply a quick way to view the same data from a different perspective.

Figure 4-11   Pivoting

4.5.3  Drill-down and drill-up
Drilling in multidimensional terminology means going from one hierarchy level to 
another. In other words, drill-down can be defined as the capability to browse 
through information, following a hierarchical structure.

In the example shown in Figure 4-12 on page 91, we show drilling down through 
a simple three level hierarchy present in the product dimension. The hierarchy is 

Note: You pivot when you exchange the axes of the report.

Pivot
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‘Group Class’  ‘Group’  ‘Product’. When we drill-down the Group Class 
attribute, we reach the Group. Finally by drilling down on the Group attribute, we 
reach the lowest detail present inside the product dimension (which is the 
individual product) as shown in Figure 4-12 on page 91.

Figure 4-12   Drill-down on product dimension

Another example of drill-down is shown in Figure 4-13 on page 92. Here we drill 
down from total sales in the US to sales at a particular store in Buffalo.

Note: We consider drilling up and drilling down when we want to analyze the 
subject at different levels of detail. Drilling is possible if a dimension contains a 
multiple level hierarchy.

Beverage ->Group

Beverage ->Group -> Pop
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Figure 4-13   Drill-down example

Drill-up is exactly the opposite of drill-down.

4.5.4  Drill-across
Drill-across is a method where you drill from one dimension to another. You must 
define the drill-across path. This function is often used in ROLAP. In Figure 4-14, 
you see the result of drill-across from store CA to the product dimension. The first 
chart depicts the sales in stores in three different states. And, in particular, we 
have focused on CA (California).

Figure 4-14   Drill-across result

CA Product
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By drilling across to the product dimension, we can see the details about which 
products comprised the sales for the store CA.

4.5.5  Roll-down and Roll-up
Roll-down and roll-up are OLAP functions that give the higher or lower aggregate 
over whole dimension at a given hierarchy level. 

In the example in Figure 4-15, we roll-down the product dimension from level 3, 
to level 2, and to level 1. This is done through the product hierarchy level: “Group 
class”  “Group”  “Product”.

The roll-down concept is the same as a drill-down.

Figure 4-15   Roll-down, Roll-up

Roll-up is exactly opposite to roll-down. The arrows in Figure 4-15 show the roll 
directions. The roll-up concept is the same as drill-up.
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4.6  Query and reporting tools
In this section, we discuss various query and reporting tools you can use to 
generate reports. We categorize various tools that can help in creating reports as 
follows:

� SQL query language using select statement, views, or stored procedures
� Spreadsheets
� Reporting Applications (Client-Server and Web-based)
� Dashboard and scorecard applications
� Data Mining tools

4.6.1  SQL query language

Select
In the RDBMS environment, the basic query reporting language is the structured 
query language (SQL) which enables you to query data in a database. In 
Example 4-1, we show an SQL select returning daily sales values for Product 
with subtotals and totals grouped by Date, Product Group, and Products.

Example 4-1   SQL select

select D.DAY_AD as DAY,P.SUB_PRODUCT_GROUP as GROUP,P.PRODUCTS,
sum(S.VALUE)  Sale_Amount

from SALE S
join PRODUCT P
  on (S.P_ID = P.P_ID)
join DATE D
  on (S.D_ID = D.D_ID)

where P.SUB_PRODUCT_GROUP in ('Pop')
group by rollup(D.DAY_AD,P.SUB_PRODUCT_GROUP,P.PRODUCTS)
order by 1,2,3,4;

The output of the Select statement is shown in Example 4-2.

Example 4-2   Output of select

DAY        GROUP    PRODUCTS    SALE_AMOUNT
  ---------- -------- --------- -------------
  2005-01-01 Pop      Milk               1141
  2005-01-01 Pop      Juice              2580
  2005-01-01 Pop      -                  3721
  2005-01-01 -        -                  3721
  2005-01-02 Pop      Milk               1431
  2005-01-02 Pop      Juice              8449
  2005-01-02 Pop      -                  9880
  2005-01-02 -        -                  9880
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  2005-01-03 Pop      Milk               1286
  2005-01-03 Pop      Juice              4367
  2005-01-03 Pop      -                  5653
  2005-01-03 -        -                  5653
  -          -        -                 19254

13 record(s) selected.

Views
When an SQL select is complex and used very often in users’ queries or by many 
applications, consider embedding it in an SQL view, as shown in Example 4-3.

Example 4-3   SQL view

create view sales_by_date_Pop as (
select D.DAY_AD as DAY,P.SUB_PRODUCT_GROUP as GROUP,P.PRODUCTS,

sum(S.VALUE) as Sale_Amount
from SALE S

join PRODUCT P
  on (S.P_ID = P.P_ID)
join DATE D
  on (S.D_ID = D.D_ID)

where P.SUB_PRODUCT_GROUP in ('Pop')
group by rollup(D.DAY_AD,P.SUB_PRODUCT_GROUP,P.PRODUCTS) 
)

Basically the views are helpful in hiding the complexity of the SQL statement. 
The user only needs to select the output from the view (select * from 
sales_by_date_pop) instead of writing the long SQL statement, such as the one 
in Example 4-3. 

RDBMS stored procedures
Stored procedures are programs that use data from RDBMS and can be 
executed from the RDMS environment. There are generally two types of RDBMS 
procedures, PL SQL-based and External (written in a higher programing 
language, such as C, Cobol, or BASIC). In Example 4-4, we show a sample DB2 
PL SQL-stored procedure using an SQL select code with parameter “Group”. In 
Example 4-4, we use the create procedure command and pass the procedure 
with an input parameter specifying a product group. The procedure returns sales 
amount for all dates for the specific product group defined by parameter. The 
syntax of command is: call sales_by_date('Pop'). 

Example 4-4   Stored procedure

CREATE PROCEDURE sales_by_date (IN i_GROUP char(35))
RESULT SETS 1
LANGUAGE SQL
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SPECIFIC SELECT_LIST
READS SQL DATA
DETERMINISTIC
BEGIN
DECLARE c1 CURSOR WITH RETURN FOR
select D.DAY_AD as DAY, P.SUB_PRODUCT_GROUP as GROUP, P.PRODUCTS, sum(S.VALUE) 
as Sale_Amount
from SALE S 

join PRODUCT P on (S.P_ID = P.P_ID) 
join DATE D on (S.D_ID = D.D_ID)

where P.SUB_PRODUCT_GROUP in (i_GROUP)
group by rollup(D.DAY_AD, P.SUB_PRODUCT_GROUP,P.PRODUCTS) order by 1,2,3,4;
open c1;
END@

And the result we get is shown in Example 4-5.

Example 4-5   PL SQL stored procedure output for parameter “Pop”

Result set 1
  --------------
DAY        GROUP    PRODUCTS    SALE_AMOUNT

  ---------- -------- --------- -------------
  2005-01-01 Pop      Milk               1141
  2005-01-01 Pop      Juice              2580
  2005-01-01 Pop      -                  3721
  2005-01-01 -        -                  3721
  2005-01-02 Pop      Milk               1431
  2005-01-02 Pop      Juice              8449
  2005-01-02 Pop      -                  9880
  2005-01-02 -        -                  9880
  2005-01-03 Pop      Milk               1286
  2005-01-03 Pop      Juice              4367
  2005-01-03 Pop      -                  5653
  2005-01-03 -        -                  5653
  -          -        -                 19254

13 record(s) selected.
Return Status = 0

A different SQL command call sales_by_date('Water') gives us a different 
result set for Product group Water as shown in Example 4-6.

Example 4-6   PL SQL stored procedure output for parameter Water

Result set 1
  --------------

DAY        GROUP    PRODUCTS  SALE_AMOUNT
---------- -------- --------- -----------
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2005-01-01 Water    Soda             1017
2005-01-01 Water    -                1017
2005-01-01 -        -                1017
2005-01-02 Water    Soda              928
2005-01-02 Water    -                 928
2005-01-02 -        -                 928
2005-01-03 Water    Soda              585
2005-01-03 Water    -                 585
2005-01-03 -        -                 585
-          -        -                2530

10 record(s) selected.

  Return Status = 0

4.6.2  Spreadsheets
One of the most widely used tools for analysis is the spreadsheet. It is a very 
flexible and powerful tool; and therefore, you can find it in almost every 
enterprise around the world. This is a good-news and bad-news situation. It is 
good, because it empowers users to be more self-sufficient. It is bad, because it 
can result in a multitude of independent (non-integrated and non-shared) data 
sources that exist in any enterprise.

Here are a few examples of spreadsheet use:

� Finance reports, such as a price list or inventory

� Analytic and mathematical functions

� Statistical process control, which is often used in manufacturing to monitor 
and control quality

4.6.3  Reporting applications
There are many analytical query and reporting applications in the market which 
work with different relational databases or with special multidimensional 
structures, such as cubes. These applications include: 

� IBM Alfablox
� DB2 OLAP Server™
� Microstrategy

Note: Views and stored procedures are also used in the query and reporting 
environment to control data access for tables and their rows. 
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� Hyperion Essbase
� Brio
� BusinessObjects
� Cognos Impromptu
� Crystal Reports

In Table 4-1, we list important criteria for you to consider when you are selecting 
reporting applications for your company.

Table 4-1   Selection criteria for reporting applications

4.6.4  Dashboard and scorecard applications 
The most common mechanisms for viewing performance data are dashboards 
and scorecards. Top and middle management are not the target users for 
analytical tools. Their requirements are for viewing performance data at high 
levels. Dashboards provide the management with a high level view of the data.

A dashboard provides a graphical user interface that can be personalized to suit 
the needs of the user. A dashboard graphically displays scorecards that show 
performance measurements, together with a comparison of these measurements 
against business goals and objectives.

Report authoring  and 
formatting

Drag and drop creation, multiple sources, mixed tables, 
graphs, tabular formats, style sheets, WYSIWYG, print 
control, sorting, invoices, and labels

Report distribution Time or event scheduled; table of contents navigation; 
formats, such as PDF, HTML, and Excel®; alerts

Analytical functions Running totals, percent of total, Euro conversion, ranking, 
highlight exceptions, mining, and binning

Query interaction Ease of use, shield user from SQL and database 
navigation complexity, and modify and reuse existing 
queries

OLAP functionality Hierarchical summaries, drill-down, drill-up, and view 
pivoting

SDKs and APIs Data sources, language libraries, embedded reporting, 
MDX support, and performance

Security Report element security

Aggregates Aggregate awareness

Note: Top executives are the target users for dashboard applications.
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In Figure 4-16 we show a business process management (BPM) dashboard 
example from the insurance industry. It is not critical to read the values on the 
dashboard, but to understand the concept. It gives management critical data on a 
number of strategic elements that require special focus and monitoring. For 
example, it shows new business growth by category. Management can monitor 
these elements to make sure they are in line with the business goals and 
strategy. If not, management can take immediate action. 

The dashboard also gives a current status on a number of projects with 
appropriate alerts. 

Figure 4-16   Insurance dashboard

In Figure 4-17 on page 100, we show an example retail dashboard. It shows a list 
of the key business areas and the appropriate alert status for each area. There is 
also a summary of the current business financial status (shown in the inset). With 
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this type of information, management now has the capability to not just monitor, 
but also to impact the measurements.

Figure 4-17   Retail Dashboard

4.6.5  Data mining applications
Data mining is a relatively new data analysis technique. It is very different from 
query and reporting and multidimensional analysis in that it uses what is called a 
discovery technique. That is, you do not ask a particular question of the data but 
rather use specific algorithms that analyze the data and report what they have 
discovered. Unlike query and reporting and multidimensional analysis where the 
user has to create and execute queries based on hypotheses, data mining 
searches for answers to questions that may have not been previously asked. 
This discovery could take the form of finding significance in relationships 
between certain data elements, a clustering together of specific data elements, 

Note: The usage of dashboards to help in business performance 
management is discussed in more detail in the IBM Redbook, Business 
Performance Management...Meets Business Intelligence, SG24-6340.
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or other patterns in the usage of specific sets of data elements. After finding 
these patterns, the algorithms can infer rules. These rules can then be used to 
generate a model that can predict a desired behavior, identify relationships 
among the data, discover patterns, and group clusters of records with similar 
attributes.

Data mining is most typically used for statistical data analysis and knowledge 
discovery. Statistical data analysis detects unusual patterns in data and applies 
statistical and mathematical modeling techniques to explain the patterns. The 
models are then used to forecast and predict. Types of statistical data analysis 
techniques include:

� Linear and nonlinear analysis
� Regression analysis
� Multi-variant analysis
� Time series analysis

Knowledge discovery extracts implicit, previously unknown information from the 
data. This often results in uncovering unknown business facts.

Data mining is data driven (see Figure 4-18). There is a high level of complexity 
in stored data and data interrelationships in the data warehouse that are difficult 
to discover without data mining. Data mining provides new insights into the 
business that may not be discovered with query and reporting or 
multidimensional analysis alone. Data mining can help discover new insights 
about the business by giving us answers to questions we might never have 
thought to ask.

Figure 4-18   Data Mining focuses on analyzing the data content rather than responding to 
questions

Some data mining tools available in the market are:

� The IBM product for data mining is DB2 Intelligent Miner™, which includes IM 
Modeling, IM Scoring, and IM Visualization.
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� SAS Institute’s Enterprise Miner.

� Microsoft Analysis Services.

� Oracle Data mining (separately purchased option within Oracle 10g 
Enterprise Edition).
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Chapter 5. Dimensional Model Design 
Life Cycle

In this chapter, we discuss the activities involved in building a dimensional 
model. This can be a very tedious process because requirements are typically 
difficult to define. Many times it is only after seeing a result that you can decide 
that it does, or does not, satisfy a requirement. And, the requirements of an 
organization change over time. What is valid one day may no longer be valid the 
next. Regardless, the requirements identified at this point in the development 
cycle are used to build the dimensional model. 

But, where do you start? What do you do first? To help in that decision process, 
we have developed a dimensional model design life cycle (DMDL) which consists 
of the following phases:

� Identify business process requirements
� Identify the grain
� Identify the dimensions
� Identify the facts
� Verify the model
� Physical design considerations
� Meta data management

The following sections discuss and describe these phases of the DMDL.

5
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5.1  The structure and phases
The DMDL can help identify the phases and activities that you need to consider 
in the design of a dimensional model. It is depicted in Figure 5-1. We have used 
this methodology throughout the book as we work with dimensional models. 
More specifically, we have used it to help in the example case study documented 
in Chapter 7, “Case Study: Dimensional model development” on page 333.

Figure 5-1   Dimensional Model Design Life Cycle

We now describe the phases of the DMDL so you will be familiar with it and 
better enable its use as you design your next dimensional model:

� Identify business process requirements: Involves selection of the business 
process for which the dimensional model will be designed. Based on the 
selection, the requirements for the business process are gathered. Selecting 
a single business process, out of all those that exist in a company, often 
requires prioritizing the business processes according to criteria, such as 
business process significance, quality of data in the source systems, and the 
feasibility and complexity of the business processes.
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� Identify the grain: Next, we must identify the grain definition for the business 
process. If more than one grain definition exists for a single business process, 
then we must design separate fact tables. Avoid forcefully fitting multiple grain 
definitions into the same fact table. We also need to make sure that we design 
the grain at the most atomic level of detail so that we can extend the 
dimensional model to meet future business requirements. In other words, we 
are able to add new facts and dimensions to the existing model with little or no 
change to the front-end applications, or any major rework to the existing 
model.

� Identify the dimensions: Here we identify the dimensions that are valid for 
the grain chosen in the previous step. 

� Identify the facts: Now we identify the facts that are valid for the grain 
definition we chose.

� Verify model: Before continuing, we must verify that the dimensional model 
can meet the business requirements. Sometimes it may be required to revisit, 
and perhaps change, the definition of the grain to assure we can meet the 
requirements.

� Physical design considerations: Now that the model has been designed, 
we can focus on other considerations, such as performance. It may require 
tuning by taking actions such as data placement, partitioning, indexing, 
partitioning, and creating aggregates.

We describe the DMDL by using a retail sales business process. However, there 
may be concepts of the DMDL that are not applicable to the retail sales business 
process. For completeness, we cover those concepts in Chapter 6, “Modeling 
considerations” on page 209.

5.2  Identify business process requirements
During this phase, we identify the business process for which the dimensional 
model will be designed. However, be aware that a business process may require 
more than one dimensional model.

In dimensional modeling, the best unit of analysis is the business process in 
which the organization has the most interest. A business process is basically a 
set of related activities. Business processes are roughly classified by the topics 
of interest to the business. To extract a candidate list of high potential business 
processes necessitates prioritization of requirements. Examples of business 
processes are customers, profit, sales, organizations, and products. 

To help in determining the business processes, use a technique that has been 
successful for many organizations. Namely, the 5W-1H rule. First determine the 
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when, where, who, what, why, and how of your business interests. For example, 
to answer the who question, your business interests may be in customer, 
employee, manager, supplier, business partner, and/or competitor.

Before beginning, recall the various architectures used for data warehouse 
design we discussed in 3.3, “Data warehouse architecture choices” on page 57. 
They were:

� Business-wide enterprise data warehouse
� Independent data warehouse
� Dependent data warehouse

Create a dimensional model for a business process directly from OLTP source 
systems, as in the case of independent and dependent data warehouse design 
architectures. Or create a dimensional model for a business process from the 
enterprise data warehouse, as in the case of the business-wide enterprise data 
warehouse architecture.

Figure 5-2 on page 107 shows that the source for a dimensional model can be:

� An enterprise wide data warehouse 

� OLTP source systems (in the case of independent or dependent data mart 
architectures)

� Independent data marts (in this situation, you might be interested in 
consolidating the independent data marts into another data mart or data 
warehouse) 

Note: When we refer to a business process, we are not simply referring to a 
business department. For example, consider a scenario where the sales and 
marketing department access the orders data. We build a single dimensional 
model to handle orders data rather than building separate dimensional models 
for the sales and marketing departments. Creating dimensional models based 
on departments would no doubt result in duplicate data. This duplication, or 
data redundancy, can result in many data quality and data consistency issues.

Note: For more information on data mart consolidation, refer to the IBM 
Redbook, Data Mart Consolidation: Getting Control of Your Enterprise 
Information, SG24-6653.
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Figure 5-2   Dimensional model sources

Data warehouse and the dimensional model
When you consider the partitioning of the data in a data warehouse, the most 
common criterion is subject area. As you may remember, a data warehouse is 
subject-oriented. It is oriented to specific selected subject areas in the 
organization, such as customer and product. For a practical implementation of a 
data warehouse, we suggest that the unit of measure is the business 
process.This is quite different from partitioning in the operational environment.

OLTP systems and the dimensional model
In the operational environment, partitioning is more typically by application or 
function because the operational environment has been built around 
transaction-oriented applications that perform a specific set of functions. And, 
typically, the objective is to perform those functions as quickly as possible. If 
there are queries performed in the operational environment, they are more 
tactical in nature and are to answer questions concerned with that instant in time. 
An example is, “Has the check from Mr. Smith been processed?” Queries in the 
data warehouse environment are more strategic in nature and intend to ask 
questions concerned with a larger scope. An example of a query is, “What 
products are selling well?” or “Where are my weakest sales offices?” To answer 
those queries, the data warehouse is structured and oriented to subject areas 
such as product or organization. These subject areas are the most common unit 
of logical partitioning in the data warehouse.
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Figure 5-3 depicts an E/R model (which can be an OLTP or an enterprise data 
warehouse) that consists of several business processes.

Figure 5-3   E/R model consists of several business processes

5.2.1  Create and Study the enterprise business process list
During this activity, we create a complete enterprise-wide business process list. 
A sample business process list is shown in Table 5-1 on page 109, along with a 
number of other assessment factors, such as:

� Complexity of the source systems of each business process
� Data availability of these systems
� Data quality of these systems
� Strategic business significance of each business process

Table 5-1 on page 109 also shows the value points along with the assessment 
factors involved. For example, for the business process Finance, the Complexity 
= High(1). The 1 here is the assigned value point. The value points for each 
assessment factor are listed in detail in Table 5-2 on page 109.

Business
Process #1

Business
Process #3

Business
Process #2
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Table 5-1   Enterprise business process list

Table 5-2 shows the value points for each of the assessment factors:

� Complexity
� Data availability
� Data quality
� Strategic business significance

Table 5-2   Value points table for assessment factors

We recommend that you include the assessment factors you think are important 
for your business processes and assign them with your evaluation of the 

Name of business 
process

Complexity Data 
availability 

Data quality Strategic 
business 
significance

Retail sales Low (3) High (3) High (3) High (6)

Finance High (1) High (3) Medium (2) Medium (4)

Servicing Low (3) High (3) Medium (2) High (6)

Marketing Medium (2) Medium (2) Medium (2) Medium (4)

Shipment Low (3) Low (1) High (3) Low (2)

Supply 
management

Medium (2) Low (1) Medium (2) Low (2)

Purchase orders High (1) Medium (1) Low (1) Medium (4)

Labor Low (3) Low (1) Low (1) High (2)

Assessment Factor Low Medium High

Complexity 3 2 1

Data availability 1 2 3

Data quality 1 2 3

Strategic business significance 2 4 6

Note: The value points, or weight, given for the assessment factor, Strategic 
business significance, is more than the other factors. This is simply because 
the company has decided that strategically significant business processes 
should be given a higher value than the other assessment factors. 
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appropriate points or weight. For example purposes, we have included only four 
factors in Table 5-2 on page 109. 

This exercise will help you quickly prioritize the business processes for which 
dimensional models should be built. 

5.2.2  Identify business process
In this phase, we prioritize the business processes. The basic idea here is to 
identify the most and least feasible processes for building a dimensional model.

Table 5-3 shows a business process list in descending order of priority. The 
priority is based on the number of points in the Point sum column. It is a 
summary of all the assessment factor points. Table 5-3 is created from the 
enterprise-wide business process list shown in Table 5-1 on page 109.

For example, when we look at the finance business, the point sum column has a 
value of 10 (1 + 3 + 2 + 4), which is the sum of all assessment factor points.

Table 5-3   Enterprise-wide business process priority listing

From Table 5-3, it is observed that the retail sales process gets the highest 
priority. Therefore, it is also likely that this will be the business process for which 
the first dimensional model (and data mart) will be built. 

Therefore, it is the business process we have selected for the example case 
study dimensional model in this chapter. 

Name of 
business 
process

Complexity Data 
availability

Data 
quality

Strategic 
business 
significance

Point
sum

Retail sales Low (3) High (3) High (3) High (6) 15

Finance High (1) High (3) Medium (2) Medium (4) 10

Servicing Low (3) High (3) Medium (2) High (6) 14

Marketing Medium (2) Medium (2) Medium (2) Medium (4) 10

Shipment Low (3) Low (1) High (3) Low (2) 9

Supply Mgmt Medium (2) Low (1) Medium (2) Low (2) 7

Purchase 
Order

High (1) Medium (1) Low (1) Medium (4) 7

Labor Low (3) Low (1) Low (1) High (2) 7
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5.2.3  Identify high level entities and measures for conformance
The next step is to determine the high level business entities involved in each 
process. We depict this in Table 5-4. The idea is to determine which entities are 
common across several business processes. Once identified, we use these 
entities as common across all dimensional models (data marts) in the enterprise. 
Each business process will then be tied together through these common 
(conformed) dimensions. 

To create conformed dimensions that are used across the enterprise, the various 
businesses must agree on the definitions for these common entities. For 
example, as shown in Table 5-4, the business processes, Retail sales, Finance, 
Servicing, Marketing, Shipment, Supply management, and Purchase order, 
should agree on a common definition of the Product entity, because all these 
business processes have the product entity in common. The product entity then 
becomes a conformed Product dimension which is shared across all the 
business processes. 

However, getting agreement on definitions of common entities, such as product 
and customer, can be difficult because they typically vary from one business 
process to another. And, therefore, changes will likely impact existing 
applications. 

Table 5-4   Business processes and high level entities

Note: Table 5-3 serves only as a guideline for identifying high priority and 
feasible business processes in our example. You will go through a similar 
methodology in prioritizing the business processes in your company. 
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Retail sales X X X X X X

Finance X X

Servicing X X X X

Marketing X X X

Shipment X X X X X X X
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What are conformed dimensions? 
A data warehouse must provide consistent information for queries requesting 
similar information. One method to maintain consistency is to create dimension 
tables that are shared (and therefore conformed), and used by all applications 
and data marts (dimensional models) in the data warehouse. Candidates for 
shared or conformed dimensions include customers, time, products, and 
geographical dimensions, such as the store dimension.

What are conformed facts? 
Fact conformation means that if two facts exist in two separate locations, then 
they must have the same name and definition. As examples, revenue and profit 
are each facts that must be conformed. By conforming a fact, then all business 
processes agree on one common definition for the revenue and profit measures. 
Then, revenue and profit, even when taken from separate fact tables, can be 
mathematically combined.

Establishing conformity
Developing a set of shared, conformed dimensions is a significant challenge. Any 
dimensions that are common across the business processes must represent the 
dimension information in the same way. That is, it must be conformed. Each 
business process will typically have its own schema that contains a fact table, 
several conforming dimension tables, and dimension tables unique to the 
specific business function. The same is true for facts. 

5.2.4  Identify data sources
In this activity, we identify the data sources involved with the business 
processes. Table 5-5 on page 113 shows a sample listing of business processes 
and their respective data sources, along with their owner, location, and platform. 
Other factors can also be associated to describe and document the data source 

Supply management X X X X X

Purchase order X X X

Human resources X
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in more detail. However, for simplicity of the example, we have chosen the name, 
owner, location, and platform of the data source. 

Table 5-5   Data sources for business process

5.2.5  Select requirements gathering approach
The traditional development cycle focuses on automating the process, making it 
faster and more efficient. The dimensional model development cycle focuses on 
facilitating the analysis that will change the process to make it more effective. 
Efficiency measures how much effort is required to meet a goal. Effectiveness 
measures how well a goal is being met against a set of expectations. 

As previously mentioned, requirements are typically difficult to define. Often, it is 
only after seeing a result that you can decide that it does, or does not, satisfy a 
requirement. And, the requirements of an organization change over time. What is 
valid one day may no longer be valid the next day. Regardless, we use the 
requirements identified at this point in the development cycle to build the 
dimensional model. 

The question then is how can you build something that cannot be precisely 
defined? And, how do you know when you have successfully identified the 
requirements? Although there is no definitive test, we propose that if your 
requirements address the following questions, then you probably have enough 
information to begin modeling.

The questions relate to who, what, when, where and how

� Who are the people, groups, and organizations of interest?

� What functions need to be analyzed?

� Why is the data required?

� When does the data need to be recorded?

� Where, geographically and organizationally, do relevant processes occur?

� How do we measure the performance of the functions being analyzed?

� How is performance of the business process measured? What factors 
determine the success or failure?

Business 
process

Data 
sources

Owner Location Platform

Retail sales Source 1 Order admin New Jersey DB2

Finance Source 2 Finance admin New York DB2

And more
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� What is the method of information distribution? Is it a data report, paper, 
pager, or e-mail (examples)?

� What types of information are lacking for analysis and decision making?

� What steps are currently taken to fulfill the information gap?

� What level of detail would enable data analysis?

There are likely many other methods for deriving business requirements. 
However, in general, these methods can be placed in one of two categories: 

� Source-driven 
� User-driven 

Figure 5-4 depicts an example of this methodology.

Figure 5-4   Source-driven and User-driven requirements gathering

Source-driven requirements gathering 
Source-driven requirements gathering, as the name implies, is a method based 
on defining the requirements by using the source data in production operational 
systems. This is done by analyzing an E/R model of source data if one is 
available or the actual physical record layouts and selecting data elements 
deemed to be of interest.

The major advantage of this approach is that you know from the beginning that 
you can supply all the data, because you are already limiting yourself to what is 
available. A second benefit is that you can minimize the time required by the 
users in the early stages of the project. However, there is no substitute for the 
importance and value you get when you get the users involved.

What can be 
delivered and 
will be useful

What we want

What we have

User Requirements

Operational Data

Source 
Driven

User 
Driven
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Of course there are also disadvantages to this approach. By minimizing user 
involvement, you increase the risk of producing an incorrect set of requirements. 
Depending on the volume of source data you have, and the availability of E/R 
models for it, this can also be a very time-consuming approach. Perhaps most 
important, some of the user’s key requirements may need data that is currently 
unavailable. Without the opportunity to identify these requirements, there is no 
chance to investigate what is involved in obtaining external data. External data is 
data that exists outside the enterprise. Even so, external data can often be of 
significant value to the business users. 

The result of the source-driven approach is to provide what you have. We think 
there are at least two cases where this is appropriate. First, relative to 
dimensional modeling, it can be used to develop a fairly comprehensive list of the 
major dimensions of interest to the enterprise. If you ultimately plan to have an 
enterprise-wide data warehouse, this could minimize the proliferation of duplicate 
dimensions across separately developed data marts. Second, analyzing 
relationships in the source data can identify areas on which to focus your data 
warehouse development efforts.

User-driven requirements gathering
User-driven requirements gathering is a method based on defining the 
requirements by investigating the functions the users perform. This is usually 
done through a series of meetings and/or interviews with users.

The major advantage to this approach is that the focus is on providing what is 
really needed, rather than what is available. In general, this approach has a 
smaller scope than the source-driven approach. Therefore, it generally produces 
a useful data warehouse or a data mart in a shorter time span.

On the negative side, expectations must be closely managed. The users must 
clearly understand that it is possible that some of the data they need can simply 
not be made available for a variety of possible reasons. But, try not to limit the 
things for which the user asks. Outside-the-box thinking should be promoted 
when defining requirements for a data warehouse. This prevents you from 
eliminating requirements simply because you think they might not be possible. If 
a user is too tightly focused, it is possible to miss useful data that is available in 
the production systems.

We believe user-driven requirements gathering is the approach of choice, 
especially when developing dependent data marts or populating data marts from 
a business-wide enterprise warehouse. 
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5.2.6  Requirements gathering
During requirements gathering, business users needs are collected and 
documented. Requirements gathering focuses on the study of business 
processes and information analysis activities with which users are involved. A 
user typically needs to evaluate, or analyze, some aspect of the organization’s 
business. It is extremely important that requirements gathering focus on the two 
key elements of analysis that business users are involved with on a day-to-day 
basis:

� What is being analyzed?
� The evaluation criteria

Requirements gathering, therefore, is extremely oriented toward understanding 
the problem domain for which the modeling is done. Typically, requirements at 
this stage are documented rather informally or, at least, they are not represented 
in detailed schemas. 

Assume that we are designing a dimensional model for a retail sales business 
process. We identified the retail sales business process from section 5.2.2, 
“Identify business process” on page 110. Figure 5-5 shows the E/R model for this 
business process.

Figure 5-5   E/R Model for the retail sales business process
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Now assume that we perform business requirements analysis for the retail sales 
process. We identify that the business needs the answers to the questions 
shown in Table 5-6. 

Table 5-6   User requirements for the retail sales process

The column named Importance (Low/Medium/High or Critical) signifies the 
importance of the questions. Some questions (business needs) may be highly 
significant for the business where other questions may be less significant in 
comparison. 

Seq.
no.

Business requirement Importance

Q1 What is the average sales quantity this month for each 
product in each category?

Medium

Q2 Who are the top 10 sales representatives and who are their 
managers? What were their sales for the products they sold 
in the first and last fiscal quarters?

High

Q3 Who are the bottom 20 sales representatives and who are 
their managers?

High

Q4 How much of each product did U.S. and European customers 
order, by quarter, in 2005?

High

Q5 What are the top five products sold last month by total 
revenue? By quantity sold? By total cost? Who was the 
supplier for each of those products?

High

Q6 Which products and brands have not sold in the last week? 
The last month?

High

Q7 Which salespersons had no sales recorded last month for 
each of the products in each of the top five revenue 
generating countries?

High

Q8 What was the sales quantity of each of the top five selling 
products on Christmas, Thanksgiving, Easter, Valentines 
Day, and the Fourth of July?

Medium

Q9 What are the sales comparisons of all products sold on 
weekdays compared to weekends? Also, what was the sales 
comparison for all Saturdays and Sundays every month?

High

Q10 What are the 10 top and bottom selling products each day 
and week? Also at what time of the day do these sell? 
Assuming there are five broad time periods- Early morning 
(2AM-6AM), Morning (6AM-12PM), Noon (12PM-4PM), 
Evening (4PM-10PM), and Late night (10PM-2AM).

Time, 
Product
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In addition to the set of business requirements listed in Table 5-6 on page 117, it 
is very important to understand how the business wants to preserve the history. 
In other words, how does the business want to record the changed data. Some of 
the questions (in regard to maintaining history) that you may ask are listed in 
Table 5-7. 

Table 5-7   Questions relating to maintaining history

5.2.7  Requirements analysis
During requirements analysis, informal requirements (as gathered in section 
5.2.6, “Requirements gathering” on page 116) are further investigated and high 
level measures and high level entities (potential future dimensions) are produced.

Table 5-8 shows high level entities and measures identified from the 
requirements stated in Table 5-6 on page 117 for the retail sales business 
process. Note that the high level entities are potential future dimensions.

Table 5-8   Requirement Analysis - High level entities and measures 

Seq.
no.

Question How to maintain history

1 What happens if an employee changes 
from Region A to Region B?

Overwrite history or maintain 
history

2 What happens if an employee changes 
from Manager A to Manager B?

Overwrite history or maintain 
history

3 What happens if a product changes from 
existing Category A to Category B?

Overwrite history or maintain 
history

4 What happens when a product is 
discontinued?

Overwrite history or maintain 
history

5 More questions Overwrite history or maintain 
history

Seq. 
no.

Business requirement High level entities Measures

Q1 What is the average sales quantity this 
month for each product in each 
category?

Month, Product Quantity of 
units sold

Q2 Who are the top 10 sales representatives 
and who are their managers? What were 
their sales in the first and last fiscal 
quarters for the products they sold?

Sales 
representative, 
Manager, Fiscal 
Quarter, Product

Revenue 
sales
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We listed each business requirement in Table 5-8 on page 118 and identified 
some of the high-level entities and measures. Using this as a starting point, we 
now filter down the entities and measures as shown in Table 5-9 on page 120. 

Q3 Who are the bottom 20 sales 
representatives and who are their 
managers?

Sales 
representative, 
Manager

Sales 
Revenue

Q4 How much of each product did U.S. and 
European customers order, by quarter, in 
2005?

Product, 
Customers, 
Quarter, Year

Quantity of 
units sold

Q5 What are the top five products sold last 
month by total revenue? By quantity 
sold? By total cost? Who was the 
supplier for each of those products?

Product, Supplier Revenue 
sales, 
Quantity of 
units sold, 
Total Cost

Q6 Which products and brands have not 
sold in the last week? The last month?

Product, Brand, 
Month

Sales 
Revenue

Q7 Which salespersons had no sales 
recorded last month for each of the 
products in each of the top five revenue 
generating countries?

Salesperson, 
Product, Customer 
country, Month

Sales 
Revenue

Q8 What was the sales quantity of the top 
five selling products on Christmas, 
Thanksgiving, Easter, Valentines Day 
and the Fourth of July?

Holidays, Products Sales 
revenue

Q9 What are the sales comparisons of all 
products sold on weekdays compared to 
weekends? Also, what was the sales 
comparison for all Saturdays and 
Sundays every month?

Products, 
Weekdays, 
Weekends

Sales 
revenue

Q10 What are the 10 top and bottom selling 
products each day and week? Also, at 
what time of the day do these sell? 
Assuming there are five broad time 
periods- Early morning (2AM-6AM), 
Morning (6AM-12PM), Noon 
(12PM-4PM), Evening (4PM-10PM) Late 
night (10PM-2AM).

Time, Product Sales 
revenue

Seq. 
no.

Business requirement High level entities Measures
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Also, any hierarchies associated with each of these high-level entities (which 
could be transformed to dimensions later) are documented. 

Table 5-9   Final set of high level entities and measures

5.2.8  Business process analysis summary
The final output of the Identify business process phase is the requirements 
gathering report, which contains the following:

� Business process listing

� Business process prioritization

� High level entities and measures, which are common between various 
business processes

� Business process identified for which the dimensional model will be built

� Data sources listing

� Requirement gathering which contains all business process requirements

Entities (potential future dimensions) Hierarchy in entity (potential future 
dimension) 

Customer
(Customer country, such as U.S. or 
Europe)

Country  Region

Product
(Brand, category)

Category  Brand

Selling Date
(Holidays, weekends, weekdays, month, 
quarter, year)

Fiscal Year  Fiscal Quarter  Fiscal 
Month

Supplier of product

Time of selling Hour  Minute

Employee or salesperson or sales 
representative

Measures 
(Key Performance Indicators)

Revenue sales, Quantity of units sold, 
Total cost

Note: The high level dimensions and measures are useful in determining the 
grain, dimensions, and facts during the different phases of the DMDL.
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� Requirement gathering analysis 

� High level entities and measures identified from the requirement analysis

5.3  Identify the grain
In the Identify the grain phase, we focus on the second step of the DMDL as 
shown in Figure 5-6. 

Figure 5-6   Dimensional Model Design Life Cycle

What is the grain?
The following are several characteristics of grain identification:

� When identifying the grain, we must specify exactly what a fact table record 
means. The grain conveys the level of detail associated with the fact table 
measurements. Identifying the grain also means deciding on the level of detail 
you want to be made available in the dimensional model. The more detail 
there is, the lower the level of granularity. The less detail there is, the higher 
the level of granularity. 
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� The level of detail available in a star schema (dimensional model) is referred 
to as the grain. Each fact and dimension table is said to have its own grain or 
granularity. In other words, each table (either fact or dimension) will have 
some level of detail associated with it. The grain of the dimensional model is 
the finest level of detail implied by the joining of the fact and dimension tables. 
For example, the granularity of a dimensional model consisting of 
dimensions, date (year, quarter, month, and day), store (region, district, and 
store) and product (category name, brand, and product) is product sold in 
store by day.

� Both the dimension and fact tables have a grain associated with them. To 
understand the grain of a dimension table, we need to understand the 
attributes of the dimension table. Every dimension has one or more attributes. 
Each attribute associates a parent or child with other attributes. This 
parent-child relationship provides different levels of summarization. The 
lowest level of summarization or the highest level of detail is referred to as 
the grain. The granularity of the dimension affects the design, and can impact 
such things as the retrieval of data and data storage. 

� A grain refers to the level of detail present in each fact table. Each row should 
hold the same type of data. For example, each row could contain daily sales 
by store by product or daily line items by store.

Examples of grain definitions are:

� A line item on a grocery receipt
� A single item on an invoice 
� A single item on a restaurant bill
� A line item on a bill received by a hospital
� A monthly snapshot of a bank account statement
� A weekly snapshot of the number of products in the warehouse inventory
� A single airline ticket purchased on a day
� A single bus ticket purchased on a day

What is Granularity?
The fact and dimension tables have a granularity associated with them. In 
dimensional modeling, the term granularity refers to the level of detail stored in a 
table. 

For example, a dimension such as date (year, quarter) has a granularity at the 
quarter level but does not have information for individual days or months. And, a 
dimension such as date (year, quarter, month) table has granularity at the month 
level, but does not contain information at the day level.
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5.3.1  Fact table granularity
For our example retail sales business process from section 5.2, “Identify 
business process requirements” on page 105, we identify the grain definition as 
an individual line item on a grocery store bill. The grain detail is based on the 
requirements findings that were analyzed and documented in section 5.2.7, 
“Requirements analysis” on page 118. 

The grain definition is represented graphically in Figure 5-7 on page 124. It is 
important to understand that while gathering business requirements, you should 
collect documents, such as invoices, receipts, and order memos. These often 
have information which can be used to define the grain. Also such documents 
have information which helps identify the dimensions and facts for the 
dimensional models. 

Note: Differing data granularities can be handled by using multiple fact tables 
(daily, monthly, and yearly tables) or by modifying a single table so that a 
granularity flag (a column to indicate whether the data is a daily, monthly, or 
yearly amount) can be stored along with the data. However, we do not 
recommend storing data with different granularities in the same fact table. 

Note: The grain you choose determines the level of detailed information that 
can be made available to the dimensional model. Choosing the right grain is 
the most important step for designing the dimensional model.
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Figure 5-7   Grain example: A single line item on a grocery bill

Guidelines for choosing the fact table granularity

The grain definition is the base of every dimensional model. It determines the 
level of information that is available. Guidelines for choosing the grain definition 
are:

� During the business requirements gathering phase, try to collect any 
documents, such as invoice forms, order forms, and sales receipts. Typically, 
you will see that these documents have transactional data associated with 
them, such as order number and invoice number. 

� Documents can often point you to the important elements of the business, 
such as customer and the products. They often contain information at the 
lowest level that may be required by the business. 

� Another important point to consider is the date. Understand to what level of 
detail a date is associated with a customer, product, or supplier. Is the 
information in the source systems available at the day, month, or year level? 
When developing the grain, decide whether you would like information to be 
stored at a day, month, or year level. 

1. Eggs                      12
2. Dairy Milk                2
3. Chocolate Powder  1
4. Soda Lime             12
5. Bread                       2

Quantity UP    Dsc

$ 3
$ 2
$ 9
$ 1.5
$ 4

$36
$  4
$  9
$18
$  8

$75

Grain= 1 Line 
item on a Grocery
Bill

Employee: Amit

Customer : Carlos

08/29/2005
1600 Hours
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5.3.2  Multiple, separate grains
The primary focus of this activity is to determine if there are multiple grains 
associated with the business process for which you are designing your 
dimensional model. 

There can be more than one grain definition associated with a single business 
process. In these cases, we recommend that you design separate fact tables 
with separate grains and not forcefully try to put all facts in a single fact table. 

Differing data granularities can be handled by using multiple fact tables (daily, 
monthly, and yearly tables, as examples). Also, consider the amount of data, 
space, and the performance requirements when you decide how to handle 
multiple granularities.

Criteria for one or multiple fact tables
To determine whether to use one or multiple fact tables, consider the following 
criteria:

� One of the most important sets of criteria that helps determine the need for 
one or multiple fact tables are the facts. It is important to understand the 
dimensionality of the facts to decide whether the facts belong together in one 
fact table or separate in fact tables with different grains. For example, 
consider Figure 5-7 on page 124 which shows the grain equivalent to a single 
line item on a bill. Facts, such as quantity, sales price, and discount per item, 
are true to the grain. But facts, such as entire order total or entire order 
quantity, would not be true to the grain definition of a single line item on a bill. 
We explain the concept of identifying and handling separate grains for the 
same business process in more detail in “Handling multiple, separate grains 
for a business process” on page 225.

� Are multiple OLTP source systems involved? Remember, each source 
system is designed with a particular and very specific purpose. If two source 
systems were not serving different purposes, it would be better to have one. 
Often each source system will cater to a particular requirement of the 
business. Generally, if we are dealing with business processes, such as order 
management, store inventory, or warehouse inventory, it is likely that 
separate source systems are involved, and probably the use of separate fact 
tables is appropriate.

� It is also important to determine if multiple, unrelated business processes are 
involved. Unrelated business processes involve the creation of multiple 
separate fact tables. And, it is possible that a single business process may 
involve creation of separate fact tables to handle facts that have different 
granularity.
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� If you find that a certain dimension is not true to the grain definition, then this 
is a sign that it may belong to a new fact table with its own grain definition. 

� Consider the timing and sequencing of events. It may lead to separate 
processes handling a single event. For example, a company markets its 
product. Customers order the products. The accounts receivable department 
produces an invoice. The customer pays the invoice. After the purchase, the 
customer may return some of the products or send some back for repairs. If 
any of the products are out of warranty, this requires new charges, and so on. 
Here, several processes are involved in the sequence of single purchase 
event. And, each of these processes are likely working with a particular, and 
different, point in time. Then, each of these processes would need to be 
handled using separate fact tables.

For the example of retail sales, assume that we do not have multiple fact tables, 
because the facts (unit sales price (UP), quantity, cost price (Amount), and 
revenue earned (Total Due)) defined in Figure 5-7 on page 124 are true to the 
grain of the fact table. Therefore, we have one single grain definition, which is an 
individual line item on a bill.

We discuss the concept of identifying multiple separate grain definitions (multiple 
fact tables) for a single business process in section 6.2.1, “Handling multiple, 
separate grains for a business process” on page 225.

Multiple granularities in a single fact table
It is possible to have multiple grains in one fact table. This can be accommodated 
by adding a column called the granularity flag. Such a column would indicate 
whether the data or row in the fact table is at the daily, monthly, quarterly, or 
yearly level. Even though it is possible to store multiple grains in a single fact 
table, we do not recommend this approach. We suggest handling multiple grain 
definitions by designing separate fact tables and star schemas. Then, if desired, 
the separate star schemas may be related by use of conformed dimensions and 
conformed facts. For more detail, see section 5.4.3, “Conformed dimensions” on 
page 144 and 5.5.2, “Conformed facts” on page 174. 

5.3.3  Fact table types
In this activity, we identify the type of fact table involved in the design of the 
dimensional model. 

There are three types of fact tables:

� Transaction: A transaction-based fact table records one row per transaction. 
A detailed discussion about the transaction fact table is available in 
“Transaction fact table” on page 231. 
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� Periodic: A periodic fact table stores one row for a group of transactions that 
happen over a period of time. A detailed discussion about the periodic fact 
table is available in “Periodic fact table” on page 232. 

� Accumulating: An accumulating fact table stores one row for the entire 
lifetime of an event. As examples, the lifetime of a credit card application from 
the time it is sent, to the time it is accepted, or the lifetime of a job or college 
application from the time it is sent, to the time it is accepted or rejected. For a 
detailed discussion of this topic, see “Accumulating fact table” on page 233. 

We summarize the differences among these types of fact tables in Table 5-10. It 
emphasizes that each has a different type of grain. And, there are differences in 
ways that inserts and updates occur in each. For example, with transaction and 
periodic fact tables, only inserts occur. But with the accumulating fact table, the 
row is first inserted. And as a milestone is achieved and additional facts are 
made available, it is subsequently updated.

We discuss each of the three fact tables in more detail, with examples, in 6.2.3, 
“Designing different grains for different fact table types” on page 230. 

Table 5-10   Comparison of fact table types

Feature Transaction Periodic Accumulating

Grain One row per 
transaction.

One row per time 
period.

One row for the entire 
lifetime of an event.

Dimension Date dimension at 
the lowest level of 
granularity.

Date dimension at 
the end-of-period 
granularity.

Multiple date 
dimensions. 

Number of 
dimensions

More than periodic 
fact type.

Fewer than 
transaction fact 
type.

Highest number of 
dimensions when 
compared to other fact 
table types. 

Conformed 
dimensions

Uses shared 
conformed 
dimensions.

Uses shared 
conformed 
dimensions.

Uses shared conformed 
dimensions.

Facts Related to 
transaction 
activities.

Related to periodic 
activities.

Related to activities 
which have a definite 
lifetime.

Conformed 
facts

Uses shared 
conformed facts.

Uses shared 
conformed facts.

Uses shared conformed 
dimensions.
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5.3.4  Check grain atomicity
In this activity, we review the atomicity (level of detail) of the grain to assure it is at 
the most detailed level. This decision should include consideration for anticipated 
future needs in order to minimize the potential for a required redesign as 
business requirements change.

Database 
size

Largest size. At 
the most detailed 
grain level, tends 
to grow very fast.

Smaller than the 
Transaction fact 
table because the 
grain of the date and 
time dimension is 
significantly higher.

Smallest in size when 
compared to the 
Transaction and 
Periodic fact tables. 

Performance Performs well and 
can be improved 
by choosing a 
grain above the 
most detailed.

Performs better than 
other fact table types 
because data is 
stored at a less 
detailed grain.

Performs well. 

Insert Yes Yes Yes

Update No No Yes, when a milestone is 
reached for a particular 
activity.

Delete No No No

Fact table 
growth

Very fast. Slow in comparison 
to transaction-based 
fact table.

Slow in comparison to 
the transaction and 
periodic fact table.

Need for 
aggregate 
tables

High, primarily 
because the data 
is stored at a very 
detailed level.

No or very Low, 
primarily because 
the data is already 
stored at a high 
aggregated level.

Medium, because the 
data is primarily stored 
at the day level. 
However, the data in 
accumulating fact tables 
is lower than the 
transaction level.

Note: In the example retail sales business process, the grain is the 
transaction fact table type.

Feature Transaction Periodic Accumulating
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The importance of having detailed atomic grain
Grain of the dimensional model is extremely important for the dimensional 
design. Even if the business requirements need information at the monthly or 
quarterly level, it is better to have the information made available at the daily 
level. This is because the more detailed (atomic) the dimensions are, the more 
detailed information that canj be provided to the business. 

For example, consider the date dimension that has only a year attribute. With 
this, we cannot get information at the quarter, month, or day level. To maximize 
available information, it is important to choose a detailed atomic grain. In this 
example, the choice could perhaps be day. 

As an example, assume a grain of one product sold in a store in a retail example. 
Here we would not be able to associate a customer with a particular product 
purchased because there is only one row for a product. If it were purchased a 
thousand times by a thousand different customers, we could not know that. 

Of course, there are situations where you can always declare higher-level grains 
for a business process by using aggregations of the most atomic and detailed 
data. However, the problem is that when a higher-level grain is selected, the 
number of dimensions are limited and may be less granular. You cannot drill 
down into these less granular dimensions to get a lower level of detail. 

Trade-offs in considering granularity
Granularity provides the opportunity for a trade-off between important issues in 
data warehousing. For example, one trade-off can be performance versus the 
volume of data (and the related cost of storing that data). Another can be a 
trade-off between the ability to access data at a very detailed level versus 
performance, and the cost of storing and accessing large volumes of data. 
Selecting the appropriate level of granularity significantly affects the volume of 
data in the data warehouse. Along with that, selecting the appropriate level of 
granularity determines the capability of the data warehouse to satisfy query 
requirements. 

To help make this clear, refer to the example shown in Figure 5-8 on page 130. 
Here we are looking at transaction data for a bank account. On the side of the 
high level of detail, we see that 50 is the average number of transactions per 
account and the size of the record for a transaction is 150 bytes. As a result, it 
would require about 7.5 KB to store the very detailed transaction records to the 
end of the month. The side with the low level of detail (with a higher level of 
granularity) is shown in the form of a summary by account per month. Here, all 

Note: For more detailed discussion on the importance of having a detailed 
atomic grain, see 6.2.2, “Importance of detailed atomic grain” on page 228. 
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the transactions for an account are summarized in only one record. The 
summary record would require a larger record size, perhaps 200 bytes instead of 
the 150 bytes of the raw transaction, but the result is a significant savings in 
storage space.

Figure 5-8   Granularity of data: The level of detail trade-off

In terms of disk space and volume of data, a higher granularity provides a more 
efficient way of storing data than a lower granularity. You also have to consider 
the disk space for the index of the data as well. This makes the space savings 
even greater. Perhaps a greater concern is with the manipulation of large 
volumes of data. This can impact performance, at the cost of more processing 
power.

There are always trade-offs to be made in data processing, and this is no 
exception. For example, as the granularity becomes higher, the ability to answer 
different types of queries (that require data at a more detailed level) diminishes. If 
you have a very low level of granularity, you can support any queries using that 
data at the cost of increased storage space and diminished performance.

Look again at Figure 5-8. With a low level of granularity, you can answer the 
query: How many credit transactions were there for John's demand deposit 
account in the San Jose branch last week? With the higher level of granularity, 
you cannot answer that question, because the data is summarized by month 
rather than by week.

If the granularity does not impact the ability to answer a specific query, the 
amount of system resources required for that same query can still differ 
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considerably. Suppose that you have two tables with different levels of granularity, 
such as transaction details and a monthly account summary. To answer a query 
about the monthly report for channel utilization by accounts, you could use either 
of those two tables without any dependency on the level of granularity. However, 
using the detailed transaction table requires a significantly higher volume of disk 
activity to scan all the data as well as additional processing power for calculation 
of the results. Using the monthly account summary table requires significantly 
less resource.

In deciding about the level of granularity, you must always consider the trade-off 
between the cost of the volume of data and the ability to answer queries.

5.3.5  High level dimensions and facts from grain
In this activity, we identify high level preliminary dimensions and facts from 
whatever can be understood from the grain definition. No detailed analysis is 
carried out to identify these preliminary dimensions and facts.

For our retail sales business process, we defined the grain (see 5.3.1, “Fact table 
granularity” on page 123) as: An individual line item on a grocery bill. This is 
shown in Figure 5-9.

Figure 5-9   Identifying high level dimensions and facts with the grain

Once we define the grain appropriately, we can easily find the preliminary 
dimensions and facts.

Time Customer Employee 

Date Supplier Bill Number

Grain= 1 Line  Item on a Grocery  Bill

Preliminary Facts are:
1) Unit Sales Price
2) Quantity Sold
3) Total $ Amount
4) Discount
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Using the one line item grain definition shown in Figure 5-9 on page 131, we can 
identify all things that are true (logically associated with) to the grain. Table 5-11 
shows high level dimensions and facts that are identified from the grain.

Table 5-11   High level dimensions and facts

5.3.6  Final output of the identify the grain phase
The grain definition report is the final output report for this phase. It consists of 
one or multiple definitions for the grain of the business process, and the type of 
fact table (transaction, periodic, or accumulating) being used. It also includes the 
high level preliminary dimensions and facts.

Note: Preliminary facts are facts that can be easily identified by looking at the 
grain definition. For example, facts such as unit price, quantity, and discount 
are easily identifiable by looking at the grain. In other words, preliminary facts 
are easily visible on the grocery store bill we saw in Figure 5-7. However, 
detailed facts such as cost, manufacturing price per line item, and 
transportation cost per Item are not preliminary facts that can be identified by 
looking at the grain definition. Such facts are hidden and typically never visible 
on the grocery store bill. Preliminary facts are not the final set of facts; the 
formal detailed fact identification occurs in the Identify the facts phase in 5.5, 
“Identify the facts” on page 169. 

Dimensions Facts (KPIs)

Customer country Sales revenue

Product (Brand, category) Quantity of units sold

Sale Date Total cost

Supplier of product Discount 

Time of sale

Employee, sales person, or sales rep

Bill

Note: These preliminary high level dimensions and facts are helpful when we 
formally identify dimensions (see 5.4.1, “Dimensions” on page 135) and facts 
(see 5.5.1, “Facts” on page 171) in the later steps of the DMDL. The 
dimensions and facts get iteratively refined in each of the phases of the 
DMDL. 
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5.4  Identify the dimensions
In this phase, we focus on the third step of the DMDL, which is identify the 
dimensions. This is depicted in Figure 5-10.

Figure 5-10   Dimensional Model Design Life Cycle

Table 5-12 shows the activities associated with this phase.

Table 5-12   Activities in the identify the dimensions phase
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Identify Fast Changing 
Dimensions

Identify Facts 

Identify Fact types 
(Additive, Semi Additive, 
Non-Additive, Derived, 

Textual, Pseudo, or 
Fact-less Facts) and 

Default Aggregate Rules

Fact Table 
Sizing and Growth

Composite Key Design

Identify Conformed 
Facts

Year-to-date Facts

Event Fact Tables

Identify Data 
Sources

Requirements 
Analysis

Metadata Management

Identify Model Components

Identify the Fact 
Table Types 
(Transaction, 
Periodic, and 
Accumulating)

Dimensions FactsRequirements Grain 

Identify preliminary 
candidates for 

dimensions and 
facts from the grain

Check Grain for  
Atomicity

Identify Degenerate and 
Conformed  Dimensions

Seq. 
no.

Activity name Activity description

1 Identify dimensions Identifies the dimensions that are true to the 
grain identified in 5.3, “Identify the grain” on 
page 121. 

2 Identify degenerate 
dimensions

Identifies one or more degenerate dimensions.

3 Identify conformed 
dimensions

Identifies any existing shared dimensions in the 
data warehouse or other star schemas used for 
designing the dimensional model. 
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4 Identify dimensional 
attributes and dimensional 
hierarchies

Identifies the dimension attributes. It also 
identifies hierarchies, such as balanced, 
unbalanced, or ragged, that may exist in the 
dimensions. Techniques are suggested to 
handle these hierarchies in the design. 

5 Identify date and time 
granularity

Identifies the date and time dimensions. 
Typically these dimensions have a major impact 
on the grain and size of the dimensional model. 

6 Identify slowly changing 
dimensions

Identifies the slowly changing dimensions in the 
design. Three techniques (Type-1, Type-2, and 
Type-3) are described. 

7 Identify very fast changing 
dimensions

Identifies very fast changing dimensions and 
describes ways of handling them by creating 
one or more mini-dimensions. 

8 Identify cases for 
snowflaking

Identifies what dimensions need to be 
snowflaked. 

9 Other dimensional 
challenges to look for are: 

Other challenges relating to dimensions:

 Identify Multi-valued 
Dimensions

Looks for multi-valued dimensions and 
describes ways of handling them, such as by 
using bridge tables. 

 Identify Role-Playing 
Dimensions

Describes ways of looking for dimensions that 
can be implemented by using role-playing. 

 Identify Heterogeneous 
Dimensions

Describes ways of identifying heterogeneous 
products and implementing them. 

 Identify Garbage 
Dimensions

Describes ways to look for low-cardinality fields 
and using them to make a garbage dimension. 

 Identify Hot Swappable 
Dimensions

Describes ways of creating profile-based tables 
or hot swappable dimensions to improve 
performance and secure data. 

Note: We have listed activities to look into while designing dimensions. The 
purpose is to make you aware of several design techniques you can use. 
Knowing they exist can help you make a solid dimensional model.

Seq. 
no.

Activity name Activity description
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5.4.1  Dimensions
During this phase, we identify the dimensions that are true to the grain we chose 
in 5.3, “Identify the grain” on page 121. 

Dimension tables
Dimension tables contain attributes that describe fact records in the fact table. 
Some of these attributes provide descriptive information; others are used to 
specify how fact table data should be summarized to provide useful information 
to the business analyst. Dimension tables contain hierarchies of attributes that 
aid in summarization. Dimension tables are relatively small, denormalized lookup 
tables which consist of business descriptive columns that can be referenced 
when defining restriction criteria for ad hoc business intelligence queries.

Important points to consider about dimension tables are:

� Each dimension table has one and only one lowest level element, or lowest 
level of detail, called the dimension grain, also referred to as the granularity 
of the dimension. 

� Dimension tables that are referenced, or are likely to be referenced, by 
multiple fact tables are conformed dimensions. If conformed dimensions 
already exist for any of the dimensions in your model, you are expected to 
use the conformed versions. If you are developing new dimensions with 
potential for usage across the entire enterprise, you are expected to develop 
a design that supports anticipated enterprise needs. If you create a new 
dimension in your design which you think could potentially be used by other 
dimensional models or business processes, then you should design the new 
dimension keeping in mind your business requirements and the future 
anticipated needs. Conformed dimensions are discussed in more detail in 
“Conformed dimensions” on page 144. 

� Each non-key element (other than the surrogate key) should appear in only 
one dimension table. 

� All dimension table primary keys should be surrogate keys. An OLTP source 
system primary key should not be used as the primary key of the dimension 
table. Surrogate keys are discussed in detail in “Primary keys for dimension 
tables are surrogate keys” on page 139.

� Most dimensional models will have one or more date and time dimensions. 
Date and time dimensions are handled separately. The concepts relating to 
date and time dimensions are discussed in “Date and time granularity” on 
page 155.

� If a dimension table includes a code, then in most cases the code description 
should be included as well. For example, if region locations are identified by a 
region code, and each code represents a region name, both the code and the 
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region name should be included in the dimension table. It is important to 
understand that the quality of a dimensional model is directly proportional to 
the quality of the dimensional attributes. 

� Typically, dimensional models should not have more than 10-15 dimensions. 
If you have more dimensions, you might need to find ways to merge 
dimension tables into one.

� The primary keys (surrogate keys) of the dimension tables should be included 
in the fact table as foreign keys.

� Typically, each dimension table will have one or more additional Not 
Applicable scenario records. This is primarily because of the fact that the 
foreign key in a fact table can never be null, since by definition that violates 
referential integrity. This concept is explained in more detail in “Insert a 
special customer row for the “Not applicable” scenario” on page 150. 

� The rows in a dimension table establish a one-to-many relationship with the 
fact table. For example, there may be a number of sales to a single customer, 
or a number of sales of a single product. The dimension table contains 
attributes associated with the dimension entry; these attributes are rich and 
business-oriented textual details, such as product name or customer name. 
Attributes serve as report labels and query constraints.

To summarize, in this activity we formally identify all dimensions that are true to 
the grain. By looking at the grain definition, it is relatively easy to define the 
dimensions. The dimensions for our retail sales example (for a grocery store) are 
depicted graphically (shown in Figure 5-11 on page 137) using the grocery bill. 

Note: Each dimension attribute should take on a single value in the context of 
each measurement inside the fact table. However, there are situations where 
we need to attach a multi-valued dimension table to the fact table. In other 
words, there are situations where there may be more than one value of a 
dimension for each measurement. Such cases are handled using multi-valued 
dimensions, which are explained in detail in 6.3.10, “Multi-valued dimensions” 
on page 288. 
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Figure 5-11   Graphical identification of dimensions and facts 

List all the dimensions that are thought to be associated with this grain. The 
dimensions identified are shown in Table 5-13. For the dimensions, also define 
the level of detail (granularity) that to include in the dimension. However, the 
descriptive and detailed attributes are defined later in 5.4.4, “Dimensional 
attributes and hierarchies” on page 145.

Table 5-13   Dimensions and facts from grain

Seq. 
no.

Dimensions Dimension granularity 

1 Time It is true to the grain, and has a description of time to the 
hour and minute level.

2 Customer It is true to the grain, and this dimension describes the 
customers.

3 Employee It is true to the grain, and this dimension describes the 
employees working in the stores and associated with 
the retail sale. 

1. Eggs                      12
2. Dairy Milk                2
3. Chocolate Powder   1
4. Soda Lime              12
5. Bread                        2

Quantity UP    Dsc

$3
$2
$9
$1.5
$4

$36
$4
$9
$18
$8

$75

Customer: Carlos

08/29/2005
1600 Hours

Employee: Amit

Customer

Employee

Product

Bill Number#
(Degenerate
Dimension)

Date

Time

Quantity

Unit Price

Discount

Total Amt

Grain = 1 Line 
Item on a 
Grocery Bill

Store=S1394Store
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The preliminary dimensional schema that we get at this point is shown in 
Figure 5-12 on page 139. The dimension attributes are mentioned in the 
dimensional as TBD (To be Determined). 

4 Supplier It is true to the grain, and this dimension describes the 
suppliers of the products.

5 Product It is true to the grain, and this dimension describes the 
products, including their brand and category. 

6 Date It is true to the grain, and this dimension describes the 
different dates on which the products were sold. The 
date includes the day, month, quarter, and year 
description. 

7 Store It is true to the grain, and this dimension describes the 
stores which sold the products.

8 Bill Number
(Pos_Bill_Number)

It is true to the grain, and this dimension describes the 
Bill or receipt of the store. This is handled as a 
degenerate dimension, described in section 5.4.2, 
“Degenerate dimensions” on page 142. 

Note: The facts unit price, discount, quantity, and revenue are the preliminary 
facts identified from 5.3.5, “High level dimensions and facts from grain” on 
page 131. The facts and several other derived measures are identified in 5.5, 
“Identify the facts” on page 169.

Seq. 
no.

Dimensions Dimension granularity 
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Figure 5-12   Preliminary retail sales grocery store dimensional model

Primary keys for dimension tables are surrogate keys
It is important that primary keys of dimension tables remain stable. We strongly 
recommend that surrogate keys are created and used for primary keys for all 
dimension tables. In this section, we discuss what surrogate keys are, and why it 
is important to use the surrogate keys as the dimension table primary keys. 

What are surrogate keys? 
Surrogate keys are keys that are maintained within the data warehouse instead 
of the natural keys taken from source data systems. Surrogate keys are known 
by many other aliases, such as dummy keys, non-natural keys, artificial keys, 
meaningless keys, non-intelligent keys, integer keys, number keys, and technical 
integer keys. The surrogate keys join the dimension tables to the fact table. 
Surrogate keys serve as an important means of identifying each instance or 
entity inside a dimension table. 

Reasons for using surrogate keys are:
� Data tables in various OLTP source systems may use different keys for the 

same entity. It may also be possible that a single key is being used by different 

Note: BILL_NUMBER is a degenerate dimension. It has no attributes 
associated with it and goes inside the fact table. We discuss degenerate 
dimensions in 5.4.2, “Degenerate dimensions” on page 142.

TBD=To be Determined

*Preliminary Facts
(To be iteratively formalized 
in the ‘Identify Facts’ Phase)

BILL_NUMBER (DD) = Degenerate Dimension
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instances of the same entity. This means that different customers might be 
represented using the same key across different OLTP systems. 

This can be a major problem when trying to consolidate information from 
various source systems. Or for companies trying to create/modify data 
warehouses after mergers and acquisitions. Existing systems that provide 
historical data might have used a different numbering system than a current 
OLTP system. Moreover, systems developed independently may not use the 
same keys, or they may use keys that conflict with data in the systems of 
other divisions. This situation may not cause problems when each 
department independently reports summary data, but can when trying to 
achieve an enterprise-wide view of the data. 

This means that we cannot rely on using the natural primary keys of the 
source system as dimension primary keys because there is no guarantee that 
the natural primary keys will be unique for each instance. A surrogate key 
uniquely identifies each entity in the dimension table, regardless of its natural 
source key. This is primarily because a surrogate key generates a simple 
integer value for every new entity. 

� Surrogate keys provide the means to maintain data warehouse information 
when dimensions change. To state it more precisely, surrogate keys are 
necessary to handle changes in dimension table attributes. We discuss in 
more detail in “Slowly changing dimensions” on page 159.

� Natural OLTP system keys may change or be reused in the source data 
systems. This situation is less likely than others, but some systems have 
reuse keys belonging to obsolete data or for data that has been purged. 
However, the key may still be in use in historical data in the data warehouse, 
and the same key cannot be used to identify different entities.

The design, implementation, and administration of surrogate keys is the 
responsibility of the data warehouse team. Surrogate keys are maintained in 
the data preparation area during the data transformation process.

� One simple way improve performance of queries is to use surrogate keys. 
The narrow integer surrogate keys mean a thinner fact table. The thinner the 
fact table, the better the performance.

� Surrogate keys also help handle exception cases such as the To Be 
Determined or Not Applicable scenarios. This is discussed in “Insert a special 
customer row for the “Not applicable” scenario” on page 150. 

� Changes or realignment of the employee identification number should be 
carried in a separate column in the table, so information about the employee 
can be reviewed or summarized, regardless of the number of times the 
employee record appears in the dimension table. For example, changes in the 
organization sales force structures may change or alter the keys in the 
hierarchy. 
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This is a common situation. For example, if a sales representative is 
transferred from one region to another, the organization may want to track all 
sales for the sales representative with the original region for data prior to the 
transfer date, and sales data for the sales representative in the new region 
after the transfer date. 

To represent this organization of data, the salesperson's record must exist in 
two places in the Sales_Team dimension table. This is certainly not possible if 
the sales representative's company employee identification number is used 
as the primary key for the dimension table, because a primary key must be 
unique. A surrogate key allows the same sales representative to participate in 
different regions in the dimension hierarchy. 

In this case, the sales representative is represented twice in the dimension 
table with two different surrogate keys. These surrogate keys are used to join 
the sales representative's records to the sets of facts appropriate to the 
various regions in the hierarchy occupied by the sales representative.

The sales representative's employee number should be carried in a separate 
column in the table so information about the sales representative can be 
reviewed or summarized regardless of the number of times the sales 
representative's record appears in the dimension table. The employee 
number also helps us go back to the OLTP system from where the record was 
loaded. 

GUID (Globally Unique Identifiers) as surrogate keys
We should strictly avoid the use of GUIDs as primary keys for the dimension 
tables. GUIDs are known to work well in the source OLTP systems, but they are 
difficult to use when it comes to data warehouses. This is primarily because of 
two reasons:

1. The first reason is storage. GUIDs use a significant amount of space 
compared to their integer counterparts. GUIDs take about 16 bytes each, 
where an integer takes about 4 bytes. 

2. The second reason is that indexes on GUID columns are relatively slower 
than indexes on integer keys because GUIDs are four times larger.

Note: Use a separate field in the dimension table to preserve the natural 
source system key of the entity being used in the source system. This 
helps us to go back to the original source if we need to track from where 
(which OLTP Source) the data came into the dimensional model. Also, we 
are able to summarize fact table data for a single entity in the fact table 
regardless of the number of times the entity’s record appears in the 
dimension table.
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How to identify dimensions from an E/R model
The source of a dimensional model is either the enterprise data warehouse or 
the OLTP source systems. It would be correct to say both the data warehouse 
and the OLTP source systems are typically based on E/R models; they are in 
3NF. We think if you can create a dimensional model from an E/R model, then 
you should be able to create dimensional models either from the data warehouse 
or directly from the OLTP source systems. 

The following are the steps involved in converting an E/R model to a dimensional 
model:

1. Identify the business process from the E/R model.
2. Identify many-to-many tables in the E/R model to convert to fact tables.
3. Denormalize remaining tables into flat dimension tables.
4. Identify date and time from the E/R model.

This process of converting an existing E/R model (which could be a data 
warehouse or an OLTP source system) is explained in detail in 6.1, “Converting 
an E/R model to a dimensional model” on page 210. 

5.4.2  Degenerate dimensions
In this section, we focus on identifying degenerate dimensions, which are 
dimensions without any attributes. They are not typical dimensions, but often 
simply a transaction number that is placed inside the fact table. In order to 
understand the concept of degenerate dimensions, we have to understand the 
source of the degenerate dimension, which originates in the form of some 
transaction numbers inside the OLTP system. 

All OLTP source systems generally consist of transaction numbers, such as bill 
numbers, courier tracking number, order number, invoice number, application 
received acknowledgement number, ticket number, and reference numbers. 
These transaction numbers in the OLTP system generally tell about the 
transaction as a whole. Consider the retail sales example (for grocery store) and 
reanalyze the graphical bill as shown in Figure 5-13 on page 143. 

Note: Every join between dimension and fact tables in the dimensional model 
should be based only on artificial integer surrogate keys. Use of natural OLTP 
system primary keys for dimensions should be avoided.
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Figure 5-13   Retail sales grocery store bill 

Try to analyze the Bill Number# information for the retail sales grocery store 
example. The Bill Number# is a transaction number that tells us about the 
transaction (purchase) with the store. If we take an old Bill Number# 973276 to 
the store and ask its manager to find out information relating to it, we may get all 
information related to the bill. For example, assume that the manager replies that 
the Bill Number# 973276 was generated on August 11, 2005. The items 
purchased were Apples, Oranges and Chocolates. The manager also tells us the 
quantity, unit price, and discount for each of the items purchased. He also tells us 
the total price. In short, the Bill Number# tells us the following information:

� Transaction date
� Transaction time
� Products purchased
� Quantity, unit price, and amount for each purchased product

If we now consider the Bill for our retail sales example, the important point to note 
is that we have already extracted all information related to the Bill Number# into 
other dimensions such as date, time, and product. Information relating to 
quantity, unit price, and amount charged is inside the fact table.

1. Eggs                      12
2. Dairy Milk                2
3. Chocolate Powder   1
4. Soda Lime              12
5. Bread                        2

Quantity UP    Dsc

$3
$2
$9
$1.5
$4

$36
$4
$9
$18
$8

$75

Customer: Carlos

08/29/2005
1600 Hours

Employee: Amit

Customer

Employee

Product

Bill Number#
(Degenerate
Dimension)

Date

Time

Quantity

Unit Price

Discount

Total Amt

Grain = 1 Line 
Item on a 
Grocery Bill

Store=S1394Store
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A degenerate dimension, such as Bill Number#, is there because we chose the 
grain to be an individual line item on a bill. So, the Bill Number# degenerate 
dimension is there because the grain we chose represents a single transaction or 
transaction line item.

The Bill Number# is still useful because it serves as the grouping key for 
grouping together of all the products purchased in a single transaction or for a 
single Bill Number#. Although to some, the Bill Number# looks like a dimension 
key in the fact table, it is not, because all information relating to the Bill Number# 
has been allocated to different dimensions. Hence, the so-called Bill Number# 
dimension has no attributes, and we refer it to as a degenerate dimension.

Other important things to consider about degenerate dimensions are:

� How to identify a degenerate dimension for a dimensional design.

� Should we make a separate dimension for the Bill Number#?

� Should we place the Bill Number# inside the fact table? If yes, why?

� How to realize that a degenerate dimension is missing.

� Under what situation will the Bill Number# no longer be a degenerate 
dimension? We discuss one example in “Identify degenerate dimensions” on 
page 384. We see that Invoice Number (a type of transaction number) is 
handled as a separate dimension and not as a degenerate dimension inside 
the fact table.

We discuss interesting topics about degenerate dimensions in more detail in 
6.3.1, “Degenerate dimensions” on page 240.

5.4.3  Conformed dimensions
In this activity, we identify any conformed shared dimensions that are available to 
use instead of redesigning the dimensions. In this activity, we identify whether a 
dimension being used already exists inside the enterprise data warehouse or 
dimensional model. 

What are conformed dimensions?
A conformed dimension means the same thing to each fact table to which it can 
be joined. A more precise definition is that two dimensions are conformed if they 
share one, more than one, or all attributes that are drawn from the same domain. 
A dimension may be conformed even if it contains only a subset of attributes 
from the primary dimension.

Typically, dimension tables that are referenced or are likely to be referenced by 
multiple fact tables (multiple dimensional models) are called conformed 
dimensions. If conformed dimensions already exist for any of the dimensions in 
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the data warehouse or dimensional model, you are expected to use the 
conformed dimension versions. If you are developing new dimensions with 
potential for usage across the entire enterprise warehouse, you are expected to 
develop a design that supports anticipated enterprise warehouse needs. In order 
to find out the anticipated warehouse needs, you might need to interact with 
several business processes to find out how they would define the dimensions.

To quickly summarize, the identify conformed dimensions activity involves the 
following two steps:

1. Identifying whether a dimension being used already exists. If the dimension 
being used already exists in the enterprise data warehouse, then that 
dimension has to be used. If the dimension would exist, then we would not 
identify dimensional attributes (see “Dimensional attributes and hierarchies” 
on page 145) for that particular dimension. A dimension may be conformed to 
the existing dimension even if it contains only a subset of attributes from the 
primary dimension.

2. For a nonexistent new dimension, create a new dimension with planned 
long-term cross-enterprise usage. When a dimensional model requires a 
dimension which does not exist in the enterprise warehouse or any other 
dimensional models, then a new dimension must be created. While creating 
this new dimension, you must be certain to interact with enterprise business 
functions to find out about their future anticipated need of the new dimension. 

5.4.4  Dimensional attributes and hierarchies
This activity involves the following:

� Identify dimensional attributes for the dimensions we identified in section 
“Dimensions” on page 135.

� Identify the various hierarchies (such as balanced, unbalanced, and ragged) 
associated with each of the dimensions.

Why are good quality dimensional attributes important?
After having identified the dimensions, the next step is to fill the dimensions with 
good quality attributes. The dimension tables contain business descriptive 
columns that users reference to define their restriction criteria for ad hoc 
business queries.

The quality of a good dimensional model is directly proportional to the quality of 
attributes present inside these dimension tables. The dimension table attributes 
show up as report labels inside the reports for senior management. 

So, which attribute should be included in the dimensions? To help answer that 
question, here are points to consider:
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� Non-key columns are generally referred to as attributes. Every dimension 
table primary key should be a surrogate key, which is usually not considered 
an attribute because it is simply an integer and is not used for analysis. 

� Use a separate field in the dimension table to preserve the natural source 
system key of the entity being used in the source system. 

� A schema design that contains complete, consistent, and accurate attribute 
fields helps enable queries that are intuitive, and reduces the support burden 
on the organization responsible for database management and reports.

� A well-designed schema includes attributes that reflect the potential areas of 
interest and attributes that can be used for aggregations as well as for 
selective constraints and report breaks.

� If a dimension table includes a code, in most cases, include the code 
description as well. As an example, if branch locations are identified by a 
branch code, and each code represents a branch name, then include both the 
code and the name. Avoid storing cryptic decodes inside a dimensional table 
attribute to save space.

� Be sure attribute names are unique in the model. If you have duplicate names 
for different attributes, use the prime term (entity name) to create a distinction. 
For example, if you have multiple attributes called Address Type Code, 
rename one Beneficiary Address Type Code, and another might be Premium 
Address Type Code. 

� The dimensional attributes serve as headings of the columns of the report 
and should be descriptive and easy to understand. For example, for a given 
situation where you want to store a flag such as 0/1 or Y/N, it is better to store 
something descriptive, such as Yes/No.

� An attribute can be defined to permit missing values in cases where an 
attribute does not apply to a specific item or its value is unknown.

� An attribute may belong to more than one hierarchy.

� Use only the alphabetic characters A-Z and the space character. Do not use 
special characters.

� While naming attributes, do not use possessive nouns. For example, use 
terms such as Recipient Birth Date rather than Recipient's Birth Date.

� Do not reflect permitted values in the attribute name. For example, the 
attribute name Employee Day/Night Code refers to code values designating 
day shift or night shift employees working in the grocery store. The attribute 
must be named to reflect the logical purpose and the entire range of values. 
For example, Employee Shift Type Code which allows for an expandable set of 
valid values.

� Do not include very large names for building attributes. 
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� Properly document all dimensional attributes. 

In 5.4.1, “Dimensions” on page 135, we designed the preliminary star schema 
shown in Figure 5-14. 

Figure 5-14   Preliminary retail sales grocery store dimensional model

Now fill this preliminary star schema with detailed dimension attributes for each 
dimension. Before filling in the attributes of various dimension tables, define the 
granularity of each dimension table as shown in Table 5-14.

Table 5-14   Granularities for dimension tables

Note: It is important to remember that the fact table occupies 85-90% of space 
in large dimensional models. Hence, saving space by using decodes in 
dimensional attributes does not save much overall space, but these decodes 
affect the overall quality and understandability of the dimensional model.

Note: While deciding on attributes for each of the dimensions, keep in mind 
the requirements analysis performed in 5.2.7, “Requirements analysis” on 
page 118.

Seq.
no.

Dimension table Granularity of the dimension table

1 Employee This dimension stores information at the single 
employee level. Also includes manager information.

TBD=To be Determined

*Preliminary Facts
(To be iteratively formalized 
in the ‘Identify Facts’ Phase)

BILL_NUMBER (DD) = Degenerate Dimension
 Chapter 5. Dimensional Model Design Life Cycle 147



We explain the dimensions, along with their detailed attributes, below:

� Employee dimension: Shown in Figure 5-15 on page 149, the employee 
dimension stores information about the employees working at the store. The 
grain of the employee dimension table is information about a single 
employee. 

2 Supplier Contains information about supplier’s company name 
and address.

3 Date This dimension stores information down to the day level 
including month, quarter, and year.

4 Time This dimension stores information about hour, and a 
description of the time, such as lunch time, early 
morning shift, morning, afternoon shift, and night shift.

5 Customer This dimension stores information about the customer.

6 Product This dimension stores information about the product, 
brand, and category name.

7 Store This dimension stores information about the store 
dimension.

8 Bill Number This is a degenerate dimension. It has no attributes and 
is present as a number (BILL_NUMBER) inside the fact 
table. 

Seq.
no.

Dimension table Granularity of the dimension table
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Figure 5-15   Employee dimension

The business requirements analysis in Table 5-8 on page 118 shows that 
questions Q2 and Q3 require the business to see sales figures for good and bad 
performing employees, along with the managers of these employees. The 
manager name column in the employee dimension table helps in that analysis.

� Supplier dimension: As shown in Figure 5-16 on page 150, the supplier 
table consists of attributes that describe the suppliers of the products in the 
store.

TBD=To be Determined*Preliminary Facts
(To be iteratively formalized in 
the Identify Facts Phase) BILL_NUMBER (DD) = Degenerate Dimension
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Figure 5-16   Supplier dimension

� Customer dimension: The customer dimension is shown in Figure 5-17 on 
page 151. This dimension consists of customer information. 

Insert a special customer row for the “Not applicable” scenario
Typically, in a store environment, many customers are unknown to the store. We 
need to include a row in the customer dimension, with its own unique surrogate 
key, to identify a Customer unknown to store or Not applicable, and to avoid a 
null customer key in the fact table. The concepts of referential integrity are 
violated if we put a null in a fact table column declared as a foreign key to a 
dimension table. In addition, null keys are the source of great confusion to many 
because they cannot join on null keys.

In the customer dimension table, we insert a Customer unknown to store or Not 
applicable row inside the customer table and link the fact table row 
(measurements) to this row when the customer is unknown.

TBD=To be Determined

*Preliminary Facts
(To be iteratively formalized 
in the Identify Facts Phase)

BILL_NUMBER DD) = Degenerate Dimension
150 Dimensional Modeling: In a Business Intelligence Environment



Figure 5-17   Customer dimension

� Product dimension: The product dimension, shown in Figure 5-18 on 
page 152, holds information related to products selling in the stores. It 
consists of the following hierarchy: Category  Brand  Product.

Note: You must avoid null keys in the fact table. A good design includes a row 
(Not applicable) in the corresponding dimension table to identify that the 
dimension is not applicable to the measurement.

TBD=To be Determined

*Preliminary Facts
(To be iteratively formalized 
in the ‘Identify Facts’ Phase)

BILL_NUMBER (DD) = Degenerate Dimension
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Figure 5-18   Product dimension

� Store Dimension: The store dimension holds information related to stores. 
This table is depicted in Figure 5-19 on page 153. 

TBD=To be Determined*Preliminary Facts
(To be iteratively formalized in 
the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension
TBD=To be Determined*Preliminary Facts

(To be iteratively formalized in 
the ‘Identify Facts’ Phase) BILL_NUMBER (DD) = Degenerate Dimension
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Figure 5-19   Store dimension

� Date and time dimension: The date and time dimensions are explained in 
detail in section “Date and time granularity” on page 155. 

Identifying dimension hierarchies
A hierarchy is a cascaded series of many-to-one relationships. A hierarchy 
basically consists of different levels, each corresponding to a dimension attribute. 

In other words, a hierarchy is a specification of levels that represents 
relationships between different attributes within a hierarchy. For example, one 
possible hierarchy in the date dimension is Year  Quarter  Month  Day.

There are three major types of hierarchies that you should look for in each of the 
dimensions. They are explained in Table 5-15 on page 154.

TBD=To be Determined*Preliminary Facts
(To be iteratively formalized in 
the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension

TBD=To be Determined*Preliminary Facts
(To be iteratively formalized in 
the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension
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Table 5-15   Different types of hierarchies

For the retail sales store example, Table 5-16 shows the hierarchies present 
inside various dimensions. 

Table 5-16   Dimensions and hierarchies

Seq.
no.

Name Hierarchy description How is it implemented?

1 Balanced In a balanced hierarchy, all the 
dimension branches have the 
same number of levels. For 
more details, see “Balanced 
hierarchy” on page 249.

See “How to implement a 
balanced hierarchy” on 
page 250.

2 Unbalanced A hierarchy is unbalanced if it 
has dimension branches 
containing varying numbers of 
levels. Parent-child dimensions 
support unbalanced 
hierarchies. For more details, 
see “Unbalanced hierarchy” on 
page 251.

See “How to implement an 
unbalanced hierarchy” on 
page 252. 

3 Ragged A ragged dimension contains at 
least one member whose 
parent belongs to a hierarchy 
that is more than one level 
above the child. Ragged 
dimensions, therefore, contain 
branches with varying depths. 
For more details, see “Ragged 
hierarchy” on page 260.

See “How to implement a 
ragged hierarchy in 
dimensions” on page 261.

Note: A dimension table may consist of multiple hierarchies. And, a 
dimension table may consist of attributes or columns which belong to one, 
more, or no hierarchies.

No Name Hierarchy description Type

1 Date Calendar Hierarchy: Calendar Year  Calendar 
Month  Calendar Week

Fiscal Hierarchy: Fiscal Year  Fiscal Quarter  
Fiscal Month  Fiscal Day

Balanced

2 Time None
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We have a detailed discussion about handling hierarchies in 6.3.4, “Handling 
dimension hierarchies” on page 248.

5.4.5  Date and time granularity
It is very important to identify the granularity of the date and time dimensions. 
This is primarily because the date and time dimensions help determine the 
granularity of the overall dimensional model and the level of information that is 
stored in it. Choosing a wrong grain in either the date or time dimension may 
result in important dimensions being omitted from the dimensional model. For 
example, if we are designing a dimensional model for an order management 
system and we choose the grain of the date dimension as quarter, we may miss 
many other dimensions (such as time and employee) that could be included in 
the model had the date dimension been at the day grain. We explain the date 
and time dimensions in detail below:

Date dimension
Every data mart has a date dimension because all dimensional models are 
based on a time series of operations. For example, you typically want to measure 
performance of the business over a time period. It is also possible that a 
dimensional model consists of several date dimensions. Such dimensions are 
usually deployed using a concept called role-playing, which is implemented by 
views. Role-playing is discussed in detail in section 6.3.9, “Role-playing 
dimensions” on page 285.

For the retail sales grocery store example, the date dimension is shown 
Figure 5-20 on page 156. The grain of the date dimension is a single day. 

3 Product Category Name  Brand Name  Product Name Balanced

4 Employee None

5 Supplier Supplier Country  Supplier Region  Supplier 
City

Balanced

6 Customer Customer Country  Customer Region  
Customer City

Balanced

7 Store Store Country  Store State  Store Region  
Store Area 

Balanced

No Name Hierarchy description Type
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Figure 5-20   Date dimension

Typically, the date dimension does not have an OLTP source system connected 
to it. The date dimension can be built independently even before the actual 
dimensional design has started. The best way to built a date dimension is to 
identify all columns needed and then use SQL language to populate the date 
dimension table for columns such as date, day, month, and year. For other 
columns, such as holidays, with Christmas or Boxing Day, manual entries may 
be required. The same is true for columns such as fiscal date, fiscal month, fiscal 
quarter, and fiscal years. You may also use the spreadsheet to create the date 
dimension.

The date dimension in Figure 5-20 consists of the normal calendar and fiscal 
hierarchies. These hierarchies are shown in Figure 5-21 on page 157.

Note: The time dimension is handled separately from the date dimension. It is 
not advised to merge the date and time dimension into one table because a 
simple date dimension table which has 365 rows (for one year) would explode 
into 365 (Days) x 24 (Hours) x 60 (Minutes) x 60 (Seconds) = 31536000 rows 
if we tried storing hours, minutes, and seconds. This is for just one year. 
Consider the size if it were merged with time.

TBD=To be Determined

*Preliminary Facts
(To be iteratively formalized in 
the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension
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Figure 5-21   Calendar and fiscal hierarchy in the date dimension

Handle date as a dimension or a fact?
Instead of using a separate date table, as shown in Figure 5-20 on page 156, we 
could have used a date/time column in the fact table. In this way, we could have 
removed the date table from our dimensional model. We could have used the 
SQL date functions present inside each database to filter out the day, month, and 
year as examples. But this design where we replace the date dimension with a 
column inside the fact table has issues, for the following reasons:

� As shown in Figure 5-20 on page 156, there are several date attributes not 
supported by the SQL date functions, including fiscal periods, holidays, 
seasons, weekdays, weekends, and national events. This is one of the 
primary reasons why we want to have a separate date dimension table. This 
enables the business to look at the key performance indicators of their 
business across various fiscal and other date-related attributes which are not 
possible if we used the SQL date/time column inside the fact table.

� From an ease of use point of view, it is much easier to drag the columns from 
a date table instead of using complex SQL functions to create the logic for the 
reports. 

Therefore, we think it is important to have a separate date dimension table 
instead of using a simple date/time column field in the fact table.

Day of 
Week

Fiscal 
Year

Fiscal
Quarter

Fiscal
Month

Fiscal
Week

Calendar
Year

Calendar
Quarter

Calendar
Month

Multiple

Hierarchies

Attributes
Attributes

Grain of Date Dimension
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Insert a special date row for the “Not applicable” scenario 
We discussed the Not applicable scenario in “Insert a special customer row for 
the “Not applicable” scenario” on page 150 for the customer table. Similarly for 
the date dimension, we insert a Not applicable row inside our date dimension 
table. In the date dimension table, we include a Date unknown to store or Not 
applicable or Corrupt row inside the date table and link the fact table row 
(measurements) to this row when the date is unknown, or when the recorded 
date is inapplicable, corrupted, or has not yet happened. 

Recalling the grain for the retail sales grocery example, which is an individual 
line item on a bill, the date dimension is surely going to have a date with each 
product sold, and hence each fact table row is pointing to one valid row inside the 
date dimension table.

How to handle several dates across International time zones
The topic of handling date and time across International times zones is 
discussed in 6.3.3, “Handling date and time across international time zones” on 
page 248. 

Time dimension
The time dimension for our retail sales store example is shown in Figure 5-22. 
Based on the requirements analysis performed in 5.2.7, “Requirements analysis” 
on page 118, we designed the time dimension.

Figure 5-22   Time dimension

Sample rows for the time dimension are shown in Table 5-17 on page 159.

*Preliminary Facts
(To be iteratively formalized 
in the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension
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Table 5-17   Sample rows from the time dimension

We recommend that time should be handled separately as a dimension and not 
as a fact inside the fact table.

You can handle time in dimensional modeling in two ways:

� Time of day as a separate dimension
� Time of day as a fact

We discuss more about time handling in 6.3.2, “Handling time as a dimension or 
a fact” on page 245. 

5.4.6  Slowly changing dimensions
In this phase, we identify the slowly changing dimensions and also specify what 
strategy (Type-1, Type-2, or Type-3) we use to handle the change.

What are slowly changing dimensions?
A slowly changing dimension is a dimension whose attributes for a record (row) 
change slowly over time.

Assume that David is a customer of an insurance company called INS993, Inc., 
and first lived in Albany, New York. So, the original entry in the customer 
dimension table had the record as shown in Table 5-18:

Table 5-18   Insurance customer dimension table

David moved to San Jose, California, in August, 2005. How should INS993, Inc. 
now modify the customer dimension table to reflect this change? This is the 
Slowly Changing Dimension problem. 

There are typically three ways to solve this type of problem, and they are 
categorized as follows: 

Time ID Standard time Description Time indicator

1 0600 hours Early morning AM

2 1650 hours Evening PM

3 2400 hours Late night AM

Customer key Social security number Name State

953276 989898988 David New York
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� Type 1: The new row replaces the original record. No trace of the old record 
exists. This is shown in Table 5-19. There is no history maintained for the fact 
that David lived in New York.

Table 5-19   Type 1 change in customer dimension table

� Type 2: A new row is added into the customer dimension table. Therefore, 
the customer is treated essentially as two people and both the original and 
the new row will be present. The new row gets its own primary key (surrogate 
key). After David moves from New York to California, we add a new row as 
shown in Table 5-20.

Table 5-20   Type 2 change in customer dimension table

� Type 3: The original record is modified to reflect the change. Also a new 
column is added to record the previous value prior to the change. 

To accommodate Type 3 slowly changing dimension, we now have the 
following columns:

– Customer key
– Customer name
– Original State
– Current State
– Effective Date

After David moved from New York to California, the original information gets 
updated, and we have the following table (assuming the effective date of 
change is August 15, 2005):

Table 5-21   Type 3 change in customer dimension table

Customer key
(Surrogate key)

Social security number Name State

953276 989898988 David California

Customer key
(Surrogate key)

Social security number Name State

953276 989898988 David New York

953277 989898988 David California

Customer 
key

Social 
security 
number

Customer 
name

Original 
state

Current 
state

Effective 
date

953276 989898988 David New York California August 15, 
2005
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Why do we need to handle changes in data?
We need to specify how to handle changes in data. For example, what happens 
if a customer address or name changes? Do we overwrite this change or does 
the business need to see each change. Such decisions cannot be made by the 
dimensional modeler. It is critical to involve the business users to identify how the 
they would like to see the changes that happen in various business entities.

Activities for slowly changing dimensions
In this phase, we need to identify slowly changing dimensions for the 
dimensional model designed in Figure 5-23. In addition, we also need to identify 
how we would handle the slowly changing dimensions and the strategy we would 
use.

Figure 5-23   Identifying slowly changing dimensions

In Table 5-22, we identify the slowly changing dimensions for our retail sales 
store star schema, as shown in Figure 5-23.

Table 5-22   Slowly changing dimensions identified for retail sales example

Name Strategy used Structure changed?

Product Type-2 No, only new rows added for each change.

Employee Type-3 Yes, to show current and previous manager. 
Current Manager and Previous Manager 
columns added.

Supplier Type-1 No, only current rows are updated for each 
change. No history maintained.

Time Not applicable

*Preliminary Facts
(To be iteratively formalized 
in the Identify Facts Phase)

BILL_NUMBER (DD) = Degenerate Dimension
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5.4.7  Fast changing dimensions
In this phase, we identify the fast changing dimensions that cannot be handled 
using the Type-1, Type-2, or Type-3 approaches used for slowly changing 
dimensions. For our retail sales grocery store example, we show how to handle 
this fast changing customer dimension. 

All other dimensions are handled using the Type-1, Type-2, and Type-3 
approach as shown in Table 5-22 on page 161. 

What are fast changing dimensions?
Fast changing dimensions are also called rapidly changing dimensions. In 5.4.6, 
“Slowly changing dimensions” on page 159, we focused on the typically rather 
slow changes to our dimension tables. The next question is what happens when 
the rate of change in these slowly changing dimensions speeds up? If a 
dimension attribute changes very quickly on a daily, weekly, or monthly basis, 
then we are no longer dealing with a slowly changing dimension that can be 
handled by using the Type-1, Type-2, or Type-3 approach.

The best approach for handling very fast changing dimensions is to separate the 
fast changing attributes into one or more separate dimensions which are called 
mini-dimensions. The fact table then has two or more foreign keys—one for the 
primary dimension table and another for the one or more mini-dimensions 
(consisting of fast changing attributes). The primary dimension table and all its 
mini-dimensions are associated with one another every time we insert a row in 
the fact table.

Activities for the “Identify fast changing dimensions” phase
To handle fast changing dimensions, here are the activities:

� All dimensions are analyzed to find which dimensions change very fast.

� Assume that the Customer Dimension is a fast changing dimension. 

� The Customer dimension is analyzed further to understand the impact on the 
size of the dimension table if the change is handled using the Type-2 

Date Not applicable

Store Type-1 No, only current rows are updated for each 
change. No history maintained.

Customer Yes, using Fast Changing Dimension 
strategy discussed in 5.4.7, “Fast changing 
dimensions” on page 162. 

Name Strategy used Structure changed?
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approach. If the impact on the size of the dimension table would be huge, 
then the Type-2 approach is avoided. 

� The next step is to analyze the fast changing Customer dimension in detail to 
identify which attributes of this dimension are subject to change fast. Assume 
that we identify seven fast changing attributes in the Customer dimension, as 
shown in Figure 5-24 on page 164. They are age, income, test score, rating, 
credit history score, customer account status, and weight. Such fast changing 
attributes are then separated into one new dimension 
(Customer_Mini_Dimension) table, whose primary key is attached to the fact 
table as a foreign key. This is also shown in Figure 5-24 on page 164. 

� After having identified the constantly changing attributes and putting them in 
the Customer_Mini_Dimension mini-dimension table, the next step is to 
convert these identified attributes individually into band ranges. The concept 
behind this exercise is to force these attributes to take limited, discreet 
values. For example, assume that each of the above seven attributes takes 
on 10 different values. Then, the Customer_Mini_Dimension will have 1 
million values. Thus, by creating a mini-dimension table consisting of 
band-range values, we have avoided the problem where the attributes such 
as age, income, test score, rating, credit history score, customer account 
status, and weight can no longer change. These attributes cannot change 
because they have a fixed set of band-range values (see Table 6-18 on 
page 272) instead of having a large number of values.

Note: The Type-1 approach does not store history, so it is certainly not used 
to handle fast changing dimensions. The Type-3 approach is also not used 
because it allows us to see new and historical fact data by either the new or 
prior attribute values. However, it is inappropriate if you want to track the 
impact of numerous intermediate attribute values, which would be the case for 
a fast changing dimension.
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Figure 5-24   Handling a fast changing dimension

Therefore, we have two dimension tables: 

a. One table is the primary original fast changing dimension minus the fast 
changing attributes. This is the Customer table as shown in Figure 5-24. 

b. The second table consists of the fast changing attributes which are 
typically in the mini-dimension. This table is the 
Customer_Mini_Dimension as shown in Figure 5-24. 

The following topics about fast changing dimensions are discussed in more detail 
in 6.3.6, “Handling fast changing dimensions” on page 269:

� Fast changing dimensions with a real-time example.

� Mini-dimensions and band range values.

� Fast changing dimensions, resolving issues with band ranges, and 
Mini-dimensions.

� Snowflaking does not resolve the fast changing dimension problem. 

After completing this activity (Identify Fast Changing Dimensions), we get the 
schema as shown in Figure 5-25 on page 165.

Fast Changing 
Attributes in a 
Fast Changing 
Dimension

(a) Before (b) After

Mini-Dimension

Note: It is possible that a very fast changing dimension table may be split into 
one or more mini-dimensions.
164 Dimensional Modeling: In a Business Intelligence Environment



Figure 5-25   Retail sales grocery store star schema

5.4.8  Cases for snowflaking
Further normalization and expansion of the dimension tables in a star schema 
result in the implementation of a snowflake design. A dimension table is said to 
be snowflaked when the low-cardinality attributes in the dimension have been 
removed to separate normalized tables and these normalized tables are then 
joined back into the original dimension table.

Typically, we do not recommend snowflaking in the dimensional model 
environment because it can impact understandability of the dimensional model 
and can result in decreased performance because a higher number of tables 
need to be joined.

For each dimension selected for the dimensional model, we need to identify 
which should be snowflaked. There are no candidates identified for snowflakes in 
the grocery store example.

The following topics on snowflaking are discussed in more detail in 6.3.7, 
“Identifying dimensions that need to be snowflaked” on page 277:

� What is Snowflaking?
� When do you do snowflaking?
� When to avoid snowflaking?
� Under what conditions will snowflaking improve performance?
� Disadvantages of snowflaking.

*Preliminary Facts
(To be iteratively formalized 
in the Identify Facts Phase) BILL_NUMBER (DD)=Degenerate Dimension
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5.4.9  Other dimensional challenges
In this phase, we identify other special types of dimensions, as shown in 
Table 5-23.

Table 5-23   Other special dimensions

Seq 
no.

Type How it is implemented

1 Multi-valued 
dimension

Description
Typically while designing a dimensional model, each 
dimension attribute should take on a single value in the 
context of each measurement inside the fact table. 
However, there are situations where we need to attach a 
multi-valued dimension table to the fact table, because 
there may be more than one value of a dimension for each 
measurement. Such cases are handled using 
Multi-valued dimensions. 

Implementation
Multi-valued dimensions are implemented using Bridge 
tables. For a detailed discussion, refer to 6.3.10, 
“Multi-valued dimensions” on page 288. 

2 Role-playing 
dimension

Description
A single dimension that is expressed differently in a fact 
table using views is called a role-playing dimension. A 
date dimension is typically implemented using the 
role-playing concept when designing a dimensional 
model using an Accumulating snapshot fact table. This is 
discussed in more detail in Chapter 6, “Modeling 
considerations” on page 209 and “Accumulating fact 
table” on page 233. 

Implementation
The role-playing dimensions are implemented using 
views. This procedure is explained in detail in 6.3.9, 
“Role-playing dimensions” on page 285. 
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3 Heterogeneous 
dimension

Description
The concept of heterogeneous products comes to life 
when you design a dimensional model for a company that 
sells heterogeneous products with different attributes, to 
the same customers. That is, the heterogeneous products 
have separate unique attributes and it is therefore not 
possible to make a single product table to handle these 
heterogeneous products. 

Implementation
Heterogeneous dimensions can be implemented in 
following ways:

� Merge all the attributes into a single product table 
and all facts relating to the different heterogeneous 
attributes in one fact table.

� Create separate dimensions and fact tables for the 
different heterogeneous products.

� Create a generic design to include a single fact and 
single product dimension table with common 
attributes from two or more heterogeneous products.

Implementing heterogeneous dimensions is discussed in 
more detail in 6.3.12, “Heterogeneous products” on 
page 292.

4 Garbage 
dimension

Description
A garbage dimension is a dimension that consists of 
low-cardinality columns such as codes, indicators, status, 
and flags. The garbage dimension is also referred to as a 
junk dimension. Attributes in a garbage dimension are not 
related to any hierarchy. 

Implementation
The implementation of the garbage dimension involves 
separating the low-cardinality attributes and creating a 
dimension for such attributes. This implementation 
procedure is discussed in detail in 6.3.8, “Identifying 
garbage dimensions” on page 282. 

Seq 
no.

Type How it is implemented
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For the retail sales grocery store example, we do not have any of the special 
dimensions shown in Table 5-23 on page 166. However, we recommend that you 
refer to Chapter 6, “Modeling considerations” on page 209 to understand how 
these special dimensions are designed and implemented. 

The dimensional model designed for the retail sales grocery business process to 
the end of the Identify the dimensions phase is shown in Figure 5-26.

Figure 5-26   Retail sales grocery business process (dimensional model)

The model designed to this point consists of the dimensions and preliminary 
facts. These preliminary facts are high level facts identified in section 5.3.5, “High 
level dimensions and facts from grain” on page 131. We iteratively identify 
additional facts in the next phase, 5.5, “Identify the facts” on page 169.

5 Hot swappable 
dimension 

Description
A dimension that has multiple alternate versions that can 
be swapped at query time is called a Hot Swappable 
dimension or Profile table. Each of the versions of the hot 
swappable dimension can be of a different structure. The 
alternate versions of the hot swappable dimensions 
access the same fact table but get different output. The 
different versions of the primary dimension may be 
completely different, including incompatible attribute 
names and different hierarchies. 

Implementation
The procedure to implement Hot swappable dimensions 
is discussed in detail in 6.3.13, “Hot swappable 
dimensions or profile tables” on page 294.

Seq 
no.

Type How it is implemented

*Preliminary Facts
(To be iteratively formalized 
in the Identify Facts Phase) BILL_NUMBER (DD)=Degenerate Dimension
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5.5  Identify the facts
In this phase, we focus on the fourth step of the DMDL, as shown in Figure 5-27.

Figure 5-27   Dimensional Model Design Life Cycle

To recall, we identified preliminary dimensions and preliminary facts (for the retail 
sales grocery business process) in section 5.3.5, “High level dimensions and 
facts from grain” on page 131. We used the grain definition, as shown in 
Figure 5-28 on page 171, to quickly arrive at high level preliminary dimensions 
and facts. In this phase, we iteratively, and in more detail, identify facts that are 
true to this grain. 

Table 5-24 on page 170 shows the activities that are associated with the Identify 
the facts phase.

Iterate

P
h

ys
ic

al
 D

es
ig

n
 C

o
n

si
d

er
at

io
n

s 
(I

n
d

ex
in

g
, P

ar
ti

ti
o

n
in

g
 a

n
d

 A
g

g
re

g
at

io
n

) 

Select Business 
Process to Model

Document/Study 
Enterprise Business 

Processes

Select Requirements 
Gathering  Approach

(Source Driven
Or

User Driven)

Requirements 
Gathering V

er
if

y 
D

es
ig

n
 w

it
h

 U
se

r 
R

eq
u

ir
em

en
ts

Determine All 
Dimensions

Identify Date and Time 
Granularity

Identify Slowly Changing 
Dimensions

Identify Dimensional 
Attributes (Granularity) 

and Attribute Hierarchies

Identify cases for 
Snowflaking

G
ra

in
 D

ef
in

it
io

n
 R

ep
o

rt

Dimensional Challenges 
(Multi-valued, Garbage, 

Heterogeneous, Hot 
Swappable, 
Roleplaying)

Identify High level 
Entities and 

Measures for 
Conformance

Identify Fact Table 
Granularity 

Identify Multiple 
Separate Grains 

for a Single 
Business Process 

R
eq

u
ir

em
en

t 
G

a
th

er
in

g
 R

ep
o

rt

Identify Fast Changing 
Dimensions

Identify Facts 

Identify Fact types 
(Additive, Semi Additive, 
Non-Additive, Derived, 

Textual, Pseudo, or 
Fact-less Facts) and 

Default Aggregate Rules

Fact Table 
Sizing and Growth

Composite Key Design

Identify Conformed 
Facts

Year-to-date Facts

Event Fact Tables

Identify Data 
Sources

Requirements 
Analysis

Metadata Management

Identify Model Components

Identify the Fact 
Table Types 
(Transaction, 
Periodic, and 
Accumulating)

Dimensions FactsRequirements Grain 

Identify preliminary 
candidates for 

dimensions and 
facts from the grain

Check Grain for  
Atomicity

Identify Degenerate and 
Conformed  Dimensions
 Chapter 5. Dimensional Model Design Life Cycle 169



Table 5-24   Activities in the Identify the facts phase

Figure 5-28 on page 171 shows the high level dimensions and preliminary facts 
identified from the grain definition. 

Activity name Activity description

Identify facts This activity identifies the facts that are true to the grain 
identified in 5.3, “Identify the grain” on page 121. 

Identify conformed 
facts

After we identify the facts, we determine whether any of 
these facts are conformed. If they are, we use those 
conformed facts.

Identify fact types In this activity we identify the fact types, such as:
- Additive facts
- Semi-Additive facts
- Non-Additive facts
- Derived facts
- Textual facts
- Pseudo facts
- Factless facts

Year-to-date facts Year-to-date facts are numeric values that consist of an 
aggregated total from the start of year to the current date. 
Here we verify that such facts are not included in a fact table 
with the atomic level line items.

Event fact tables Here we describe how to handle events in the event-based 
fact table. We also highlight the pseudo and factless facts 
that may be associated with such tables.

Composite key design We discuss general guidelines for designing the primary 
composite key of the fact table. We also describe situations 
when a degenerate dimension may be included inside the 
fact table composite primary key.

Fact table sizing and 
growth

Guidelines are described for use by the DBA to predict fact 
table growth. 
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Figure 5-28   Identifying high level dimensions and facts from the grain

5.5.1  Facts
In this activity, we identify all the facts that are true to the grain. These facts 
include the following:

� We identified the preliminary facts in section “High level dimensions and facts 
from grain” on page 131. Preliminary facts are easily identified by looking at 
the grain definition or the grocery bill. 

� Other detailed facts which are easily identified by looking at the grain 
definition as shown in Figure 5-28. For example, detailed facts such as cost 
per individual product, manufacturing labor cost per product, and 
transportation cost per individual product, are not preliminary facts. These 
facts can only be identified by a detailed analysis of the source E/R model to 
identify all the line item level facts (facts that are true at the line item grain).

For the retail sales grocery store example, we identify the facts that are true to 
the grain, as shown in Table 5-25. We found other detailed facts, such as cost per 
item, storage cost per item, and labor cost per item, that are available in the 
source E/R model.

Table 5-25   Facts identified for the retail sales business process

Time Customer Employee 

Date Supplier Bill Number

Grain= 1 Line  Item on a Grocery  Bill

Preliminary Facts are:
1) Unit Sales Price
2) Quantity Sold
3) Total $ Amount
4) Discount

Facts Fact description

Unit sales price Price of a single product. 

Quantity sold Quantity of each individual product that is sold. 

Amount Defined as (Unit sales price) X (Quantity sold). 

Discount Discount given on a single product. 

Cost per item Cost of a single product. 
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How to identify facts or fact tables from an E/R model
We identified the facts as shown in Table 5-25 on page 171. The process of 
identifying these facts involved use of the E/R model for the Retail Sales 
Business process, as shown in Figure 5-29 on page 173.

Total cost Defined as (Cost per item) X (Quantity sold). 

Storage cost Storage cost per product.

Labor cost Labor cost per product. 

Note: It is important that all facts are true to the grain. To improve 
performance, dimensional modelers may also include year-to-date facts inside 
the fact table. However, year-to-date facts are non-additive and may result in 
facts being counted (incorrectly) several times when more than a single date is 
involved. We discuss this in more detail in 5.5.4, “Year-to-date facts” on 
page 176. 

Facts Fact description
172 Dimensional Modeling: In a Business Intelligence Environment



Figure 5-29   E/R Model for the retail sales business process 

The following are the steps to convert an E/R model to a dimensional model:

1. Identify the business process from the E/R Model.
2. Identify many-to-many tables in E/R model to convert to fact tables. 
3. Denormalize remaining tables into flat dimension tables.
4. Identify date and time from the E/R Model.

This process of converting an existing E/R model (which can be a Data 
Warehouse or an OLTP source system) is explained in detail in 6.1, “Converting 
an E/R model to a dimensional model” on page 210. 

The final dimensional model, after having identified the facts (shown in 
Table 5-25 on page 171), is depicted in Figure 5-30 on page 174.
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Figure 5-30   Retail sales dimensional model 

5.5.2  Conformed facts
A conformed fact is a shared fact that is designed to be used in the same way 
across multiple data marts. So, the shared conformed facts mean the same thing 
to different star schemas. 

Once the facts have been identified, we must determine whether some of these 
facts already exist inside the data warehouse or in some other data marts. If any 
do, then ideally we should use these predefined (and hopefully well-tested) facts. 

We can assume that for our retail sales business process, there are no 
conformed facts. 

5.5.3  Fact types
The facts inside the fact table could be of several different types, some of which 
are described in Table 5-26 on page 175.
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Table 5-26   Fact types

Fact type Description

Additive facts Additive facts are facts that can be added across all of the 
dimensions in the fact table, and are the most common type of fact. 
Additive facts may also be called fully additive facts. They are 
identified here because these facts would be used across several 
dimensions for summation purposes. 

It is important to understand that since dimensional modeling 
involves hierarchies in dimensions, aggregation of information over 
different members in the hierarchy is a key element in the 
usefulness of the model. Since aggregation is an additive process, it 
is good if we have additive facts. 

Semi-additive 
facts

These are facts that can be added across some dimensions but not 
all. They are also sometimes referred to as partially-additive facts. 
For example, facts such as head counts and quantity-on-hand 
(inventory) are considered semi-additive. 

Non-additive 
facts

Facts that cannot be added for any of the dimensions. That is, they 
cannot be logically added between records or fact rows. 
Non-additive facts are usually the result of ratios or other 
mathematical calculations. The only calculation that can be made 
for such a fact is to get a count of the number of rows of such facts.

Table 5-27 shows examples of non-additive facts, and we discuss 
the process of handling non-additive facts in 6.4.1, “Non-additive 
facts” on page 297. 

Derived facts Derived facts are created by performing a mathematical calculation 
on a number of other facts, and are sometimes referred to as 
calculated facts. Derived facts may or may not be stored inside the 
fact table. 

Textual facts  A textual fact consists of one or more characters (codes). They 
should be strictly avoided in the fact table. Textual codes such as 
flags and indicators should be stored in dimension tables so they 
can be included in queries. Textual facts are non-additive, but could 
be used for counting. 

Pseudo fact When summed, a pseudo fact gives no valid result. They typically 
result when you design event-based fact tables. For more detail, 
see 6.4.4, “Handling event-based fact tables” on page 311.

Factless fact A fact table with only foreign keys and no facts is called a factless 
fact table. For more detail, see 6.4.4, “Handling event-based fact 
tables” on page 311.
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Table 5-27 shows the different facts and their types for the retail sales business 
process. They are all true to the grain.

Table 5-27   Facts identified for the retail sales business process

5.5.4  Year-to-date facts
The period beginning at the start of the calendar year to the current date is called 
year-to-date. For a calendar year where the starting day of the year is January 1, 
the year-to-date definition is a period of time starting from January 1 to the 
specified date. 

Year-to-Date facts are numeric totals that consist of an aggregated total from the 
start of a year to the current date. For example, assume that a fact table stores 
sales data for the year 2005. The sales for each month are additive and can be 

Note: Each fact in a fact table should have a default aggregation (or 
derivation) rule. Each fact in the fact table should be able to be subjected to 
any of the following: Sum (Additive), Min, Max, Non-additive, Semi-additive, 
Textual, and Pseudo. 

Facts Fact description Type of fact Formula 

Unit sales 
price

Sales price of a single product Non-additive

Quantity sold Quantity of each item sold Additive

Amount Total sales Additive (unit sales price) X 
(quantity sold)

Discount Discount on each item Non-additive

Item cost Cost of a single item Non-additive

Total cost Cost of all items Additive (cost per item) X 
(quantity sold)

Storage cost Storage cost per item Non-additive

Labor cost Labor cost per item Non-additive

Note: A fact is said to be derived if the fact can be calculated from other facts 
that exist in the table, or that have been also derived. You may decide not to 
include the derived facts inside the fact table and calculate these derived facts 
in a reporting application.
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summed to produce year-to-date totals. If you create a Year-to-Date fact such as 
Sales_$$_Year_To_Date, then when you query this fact in August 2005, you 
would get the sum of all sales to August 2005. 

Dimensional modelers may include aggregated year-to-date facts inside the fact 
table to improve performance and also reduce complexities in forming 
year-to-date queries. However, to avoid confusion it is typically preferred for such 
facts to be calculated in the report application.

Suggested approaches for handling year-to-date facts are as follows:

� OLAP-based applications
� SQL functions in views or stored procedures

For our retail sales business process dimensional, we do not store any 
year-to-date facts. 

5.5.5  Event fact tables
Event fact tables are used to record events, such as Web page clicks and 
employee or student attendance. Events do not always result in facts. So, if we 
are interested in handling event-based scenarios where there are no facts, we 
use event fact tables that consists of either pseudo facts or factless facts. We 
explain event fact tables in more detail in 6.4.4, “Handling event-based fact 
tables” on page 311. 

We discuss the topic of event-based fact tables in the Identify the facts phase to 
alert the reader to the considerations associated with an event-based fact table. 
Some of these considerations are:

� Event-based fact tables typically have pseudo facts or no facts at all.

� Pseudo facts can be helpful in counting.

� The factless fact event table has only foreign keys and no facts. The foreign 
keys can be used for counting purposes.

Based on the current requirements, our retail sales business process 
dimensional model has no event-based fact table. 

5.5.6  Composite key design
A fact table primary key typically is comprised of multiple foreign keys, one from 
each dimension table. Such a key is called a composite, or concatenated, 
primary key. However, it is not mandatory to have all the foreign keys included in 
the primary key. 
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Also, the combination of all foreign keys of the dimensions in the fact table will 
not always guarantee uniqueness. In such situations, you may need to include a 
degenerate dimension as a component in the primary key. It is mandatory that a 
primary key is unique. 

To determine whether a degenerate dimension needs to be included in the fact 
table primary key to guarantee uniqueness, consider the dimensional model 
depicted in Figure 5-31. 

Figure 5-31   Retail sales grocery store business process

The grain definition of this schema is a single line item on a grocery bill. The date 
dimension stores data at the day level and the time dimension stores the data at 
the hourly level. In order to build the primary key for this fact table, assume that 
we create the composite primary key of the fact table consisting of only the 
foreign keys of all the dimension. Assume that the following two sales occur:

1. On October 22, 2005, Time: 8:00AM, customer C1 buys product P1 from 
store S1, product P1 was supplied by supplier S1, the employee who sold the 
product was E1. Customer C1 gets a bill with bill number equal to 787878.

2. On October 22, 2005, Time: 8:30AM, customer C1 buys product P1 from 
store S1, product P1 was supplied by supplier S1, the employee who sold the 
product was E1. Customer C1 gets a bill with bill number equal to 790051.

The above sales scenarios are represented in the fact table shown in Figure 5-32 
on page 179. We observed that the UNIQUENESS of the fact table row is not 
guaranteed if we choose the primary key as equal to all foreign keys of all the 
dimensions. The uniqueness can only be guaranteed only if we include the 
degenerate dimension (BILL_NUMBER). Of course, we correctly assume that for 
every new purchase the same customer gets a new bill number. 

Grain Definition- A Single Line Item on a Grocery Bill (Receipt)
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Figure 5-32   Composite fact table design

The composite key for our fact table consists of all the foreign dimension keys 
and degenerate dimension (Bill_Number). 

The guarantee of uniqueness of the primary key of the fact table is determined by 
the grain definition for the fact table. However, a composite key that consists of 
all dimension foreign keys is not guaranteed to be unique. We discussed one 
such case as depicted in Figure 5-32. We discuss more about composite primary 
key design in6.4.3, “Composite key design for fact table” on page 308.

5.5.7  Fact table sizing and growth
In this activity we estimate the fact table size and also predict its growth. There 
are basically two ways to calculate the growth in fact table data. They are:

� Understanding the business: Assume that the retail sales business 
generates a gross revenue of $100 million. Also assume that the average 
price of a line item is $2. Then there would be ($100 million)/ ($2) = 50 million 
line items generated per year, and 50 million rows inserted into the star 

October 22, 2005

790051CM1S1T1D1S1C1E1P1

787878CM1S1T1D1S1C1E1P1

BILL_ 
NUMBER

(DD)

Customer 
Mini Dim 
Key

StoreIDTimeIDDateIDSupplier 
Key

Customer 
Key

Employee

Key

Product

Key

8:00 AM8:30 AM

Both 8:00 AM and 8:30 AM are represented with 
only 1 single time row (T1) because the Time 
Dimension granularity is at each hour. 

UNIQUENESS of the Composite Primary Key is not guaranteed

Row 1

Row 2

Note: Typically the fact table primary key consists of all foreign keys of the 
dimensions. However, the uniqueness of the fact table primary key is not 
always guaranteed this way. In some scenarios, you may need to include one 
or more degenerate dimensions in the fact primary key to guarantee 
uniqueness. On the contrary, in some situations, you may observe that the 
primary key uniqueness could be guaranteed by including only some of the 
many foreign keys (of the dimensions) present inside the fact table.
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schema for the retail sales business process. Recall that the grain for the 
retail sales grocery business process was a single line item on a grocery bill. 

� Technical perspective: The other way to calculate the exact size of fact 
table growth is to calculate the size of the foreign keys, degenerate 
dimensions, and facts. After we calculate the total size of the fact table 
columns, we multiply it by the number of rows that could be possibly be 
inserted assuming all permutations of all products that sell in all stores on all 
days. We may also similarly calculate the growth of the fact table for a year. 
For example, consider the star schema designed for the retail sales business 
process. This is shown in Figure 5-33 on page 181. To calculate the 
maximum possible size of the fact table, perform the following steps:

a. Calculate the approximate number of rows inside each of the dimensions, 
assuming that the dimensions have following rows:

• Time dimension: 4 rows 

• Date dimension: 365 rows for 1 year

• Product dimension: 100 rows (100 products in all)

• Store dimension: 2 rows (for 2 stores)

• Customer dimension: 1 million customers

• Customer_Mini_Dimension: 5 rows

• Supplier dimension: 50 suppliers

• Employee dimension: 10 employees

b. Calculate the base level of fact records by multiplying together the number 
of rows for each dimension, calculated in the step above. For example:

• 4 x 365 x 100 x 2 x 1 million x 5 x 50 x 10 = 730000000 rows or 730 
million rows.

Of course this is a huge number of rows if every product was sold in every 
store by every employee to every customer. 

c. We calculate the maximum fact table size growth as follows:

• Number of foreign keys = 8

• Number of degenerate dimensions = 1

• Number of facts = 8

Assuming that the fact table takes 4 bytes for an integer column, 

Total size of 1 row =(8+1+8) x 4 bytes= 68 bytes.

So, the maximum data growth for this dimensional model is:

730 million rows x 68 bytes (size of 1 row) = 45 GB
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Figure 5-33   Retail sales business process dimensional model

This mathematical fact table growth calculation helps the DBA to calculate the 
approximate and maximum growth of the fact table. This way the DBA can be 
made aware of the possible growth of the dimensional model and consider 
potential performance tuning measures. 

5.6  Verify the model
The primary focus of this phase is to test the dimensional model to see if it meets 
the business requirements. The dimensional model at this point would contain no 
data. The testing occurs to see if the existing model can answer all questions 
posed during the requirement gathering phase.

5.6.1  User verification against business requirements
Before we complete the dimensional design and pass it on to the ETL team to 
begin the ETL design, we must verify the model against the business 
requirements analyzed in 5.2.7, “Requirements analysis” on page 118. 
Table 5-28 shows the results of the verification. 

Table 5-28   Validate model against requirements

Q. 
no.

Business requirement Meets?

Q1 What is the average sales quantity this month for each
product in each category?

Yes
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At this point the dimensional modelers should have the report writers build 
pseudo logic to answer questions Q1 to Q10 in Table 5-28 on page 181. This 
process helps in the verification process from a report feasibility standpoint. 
Then, if there are any missing attributes from the dimension tables, they can be 
added.

In addition to validating the model against the requirements, also confirm 
requirements for handling history. Questions that you may need to consider and 
validate are shown in Table 5-29 on page 183. You also need to validate these 
history preserving requirements against the dimensional model. 

Q2 Who are the top 10 sales representatives and who are their 
managers? What were their sales in the first and last fiscal 
quarters for the products they sold?

Yes

Q3 Who are the bottom 20 sales representatives and who are 
their managers?

Yes

Q4 How much of each product did U.S. and European customers 
order, by quarter, in 2005?

Yes

Q5 What are the top five products sold last month by total 
revenue? By quantity sold? By total cost? Who was the 
supplier for each of these products?

Yes

Q6 Which products and brands have not sold in the last week? 
The last month?

Yes

Q7 Which salespersons had no sales recorded last month for 
each of the products in each of the top five revenue 
generating countries?

Yes

Q8 What was the sales quantity of each of the top five selling 
products on Christmas, Thanksgiving, Easter, Valentine's 
Day, and Fourth of July?

Yes

Q9 What are the sales comparisons of all products sold on 
weekdays compared to weekends? Also, what was the sales 
comparison for all Saturdays and Sundays every month?

Yes

Q10 What are the top 10 and bottom 10 selling products each day 
and week? Also at what time of the day do these sell? 
Assuming there are 5 broad time periods - Early morning 
(2AM - 6AM), Morning (6AM - 12PM), Noon (12PM - 4PM), 
Evening (4PM - 10PM) Late night Shift (10PM - 2AM)

Yes

Q. 
no.

Business requirement Meets?
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Table 5-29   Questions relating to maintaining history

5.7  Physical design considerations
In this phase we focus on physical design considerations, as depicted in the 
DMDL in Figure 5-34.

Figure 5-34   Dimensional Model Design Life Cycle

The primary focus of this phase is to design the strategy to handle the following:

� Aggregation
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Employee changes from Region A to Region B? Overwrite or maintain history
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� Aggregate navigation
� Indexing
� Partitioning

5.7.1  Aggregations
Aggregates provide a restricted list of the key columns of a fact table and an 
aggregation - generally a SUM() - of some or all of the numeric facts. Therefore, 
a fact table with eight dimensional keys and four numeric facts can be 
aggregated to a summary table of three dimensional keys, plus two facts.

In simple terms, aggregation is the process of calculating summary data from 
detail base level fact table records. Aggregates are a powerful tool for 
increasing query processing speed in dimensional data marts. The aggregation 
is primarily performed by using attributes of a dimension which are a part of a 
hierarchy.

A dimension table is made of attributes, and consists of hierarchies. A hierarchy 
is a cascaded series of many-to-one relationships. Some attributes inside the 
dimension table typically belong to one or more hierarchy.

Each attribute that belongs to a hierarchy associates as a parent or child with 
other attributes of the hierarchy. This parent-child relationship provides different 
levels of summarization. The various levels of summarization provide the 
business user the ability to drill up or drill down in the report. Highly aggregated 
data is faster to retrieve than detailed atomic level data. And, the fact table 
typically occupies a large volume of space when compared to the aggregated 
data.

The lowest level of aggregation, or the highest level of detail, is referred as the 
grain of the fact table. The granularity of the dimension affects the design of data 
storage and retrieval of data. One way to identify candidates for aggregates is to 
use automated tools that are available in the market, or write your own 
applications to monitor the SQL generated in response to business queries and 
identify predictable queries that can be processed using precomputed 
aggregates rather than ad hoc SQL.

Costs associated with aggregation
Aggregating detailed atomic fact tables improves query performance. However, 
there are costs associated with aggregation, such as:

� Storage cost 
� Cost to build and maintain the ETL process to handle the aggregated tables 
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Aggregations to avoid
Aggregation should not be considered as a substitute for reducing the size of 
large detailed fact tables. If data in the fact table is summarized, detailed 
information in the form of dimensions and facts is often lost. If the business 
needs detailed data from a summarized fact table, they simply cannot get it. 
They would need to look for the details back in the source OLTP system that 
provided the aggregated fact table data. Of course if the business has to go back 
to the source OLTP systems to get the answers, then the whole purpose of 
building a dimensional model should be questioned. We discuss the importance 
of having a detailed atomic grain in more detail in 6.2.2, “Importance of detailed 
atomic grain” on page 228.

Another important point while creating aggregates is to avoid mixing aggregated 
data and detailed data by including year-to-date aggregated facts with the 
detailed facts. This is primarily because year-to-date facts are additive, so it 
could result in accidental miscalculations. For more on this, see 5.5.4, 
“Year-to-date facts” on page 176.

Suggested approaches for aggregation 
In this section, we provide guidelines for preparing aggregate tables based on 
detailed (highly atomic) base-level fact tables:

1. Identify all dimensions and their hierarchies from the base level atomic 
dimensional model. These dimensions and hierarchies are identified from the 
base-level atomic dimensional model, depicted in Figure 5-35.

Figure 5-35   Retail sales business process dimensional model

Table 5-30 on page 186 shows all dimensions and all hierarchies 
associated with each of these dimensions, including their levels.
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Table 5-30   Dimensions and their hierarchies

2. Identify all possible combinations of these hierarchy attributes which are used 
together by business for reporting. 

In this step we identify all attributes from the hierarchies (see Table 5-30) to 
determine which of these are used frequently together. This is extremely 
critical, particularly if there are a huge number of dimensions with several 
hierarchies having several attributes in them. 

Assume from studying the business requirements, we find that the attributes 
(relating to Date, Product, and Store dimensions) are used together. These 
attributes are shown in Table 5-31. 

Table 5-31   Candidate dimensions and their hierarchies for aggregation

Name Hierarchy  Type

Date Calendar Hierarchy: Calendar Year  Calendar 
Month  Calendar Week

Fiscal Hierarchy: Fiscal Year  Fiscal Quarter  Fiscal 
Month  Fiscal Day

Balanced

Time No Hierarchy

Product CategoryName  BrandName  ProductName Balanced

Employee No Hierarchy

Supplier Supplier Country  Supplier Region  Supplier City Balanced

Customer Customer Country  Customer Region  Customer 
City

Balanced

Store Store Country  Store State  Store Region  Store 
Area 

Balanced

Customer_ 
Mini_ 
Dimension

No Hierarchy

Name Hierarchy Type

Date Calendar Hierarchy: Calendar Year  Calendar 
Month  Calendar Week

Balanced

Product CategoryName  BrandName Balanced

Store Store Country  Store State  Store Region Balanced
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3. Calculate the number of values of each attributes selected for aggregation, in 
Table 5-31 on page 186. 

It is important to consider the number of values for attributes that are 
candidates for aggregation. For example, suppose that you have 1 million 
values for the lowest level product name (assuming that the store sells 1 
million different types of products). We do not include the product name as a 
candidate to be aggregated because we are dealing with a huge number of 
rows. We use the brand and category attributes of the product hierarchy 
because the brand has about 10 000 values and category has about 1 500 
values. Moreover, the business is more interested in understanding the sales 
of brands and categories of products, than individual products. 

The number of values each attribute has is indicative of whether the attribute 
is a candidate to be aggregated. For example, if we find that a low level 
member in the hierarchy has been included and has a huge number of 
members (values), then we may drop that particular attribute and choose a 
higher level attribute which would ideally have fewer values. 

Table 5-32 shows attributes with examples of the number of possible values.

Table 5-32   Dimension attributes with values

4. Validate the final set of attribute candidates and build the aggregated 
dimensional model. 

In this step we validate the final dimensional attributes identified in Table 5-32. 
We may also decide to drop one or more attributes if we think that the 
attribute has a large number of values. The final set of the aggregated 
dimensional model is shown in Figure 5-36 on page 188. Depending upon the 
need, one or more such aggregated models can be created.

Name Hierarchy  Type

Date Calendar Hierarchy: Calendar Year (12 Years)  
Calendar Month (12 Month Names)  Calendar Week 
(52 Weeks)

Balanced

Product CategoryName (1,500 Categories)  BrandName 
(10,000 Brands)

Balanced

Store Store Country (50 Countries)  Store State (50 
States)  Store Region (6000 Regions) 

Balanced
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Figure 5-36   Aggregated dimensional design

5.7.2  Aggregate navigation
Aggregate navigation is considered an advanced concept in data warehousing, 
although the concept is actually simple. 

What is aggregate navigation?
Aggregate navigation is software that intercepts SQL requests and transforms 
them to use the best available aggregates. Aggregate navigation is software that 
intercepts an SQL request (say SQL1) and transforms it to a new SQL statement 
(assume SQL2) to be used against a particular aggregate. Aggregate navigation 
is a technique that involves redirecting SQL queries to appropriate precomputed 
aggregates. The concept behind this technique is that the SQL queries are 
intercepted and rewritten to take the best advantage of aggregate tables 
available inside the warehouse. As shown in Figure 5-37 on page 189, 
Aggregate navigator
is a software application that sits between the user and data warehouse. 

Base Level Aggregate Fact table

Aggregated Fact table

Grain: A single line item on Grocery Receipt

Grain: Product by Brand by Week by Store Region

View created from Date Dimension

View created from Store DimensionView created from Product Dimension
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Figure 5-37   Aggregate navigator 

The Aggregate navigator accepts the SQL1 statement and analyzes it. For 
example, as shown in Figure 5-37, the aggregator accepts the SQL1 statement 
and sees that the user requests data at the year level. Now there are 3 star 
schemas in Figure 5-37 from which the user can get the data for year level. The 
aggregate navigator chooses the month level star schema. Choosing the month 
level star schema instead of the day or week level star schema improves the 
performance of the query. This is because fewer rows in month need to be 
summarized to get to the year level data. Had we chosen the day or week, more 
numbers of rows would have to be summarized to get to the same result.

Aggregate navigation helps to optimize the queries by choosing the most 
appropriate aggregated schema to get to the desired results. Several database 
vendors have chosen to implement aggregate navigation software in their 
databases. In the next section, we discuss optimization with IBM DB2.

DB2 Optimizer and DB2 Cube Views
DB2 Cube Views V8.2 works together with partner BI tools to accelerate OLAP 
queries. Queries from many data sources, supported by IBM WebSphere 
Information Integrator, can be accelerated by DB2 Cube Views. DB2 Cube Views 
works by using cube meta data to design specialized summary tables containing 
critical dimensions and levels — or slices — of the cube. The DB2 optimizer 
rewrites incoming queries, and transparently routes eligible queries to the 
appropriate summary tables for significantly faster query performance. The Cube 
Views-created summary tables, also called Materialized Query Tables (MQTs), 
can accelerate all SQL-based queries to the data warehouse, not just those 

SQL

request
(SQL1)

Detailed Day level Star 

Week Level Star

Month Level Star

Aggregate Navigator
(Accepts and 

Transforms SQL1 to 
SQL2), plus redirects 

the SQL2 to 
appropriate Agg. 

Table)

Aggregate

Aware
(SQL2)

SQL1 Statement 
requesting data at 
Year Level

SQL2 Statement 
requesting Year data 

from Month Level Star 
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using a particular tool or interface. The DB2 optimizer rewrites and redirects the 
incoming queries as shown in Figure 5-38. For a more detailed discussion how 
the DB2 SQL optimizer navigates between the various base and summary 
tables, refer to 6.5.1, “DB2 Optimizer and MQTs for aggregate navigation” on 
page 318.

Figure 5-38   DB2 Optimizer

5.7.3  Indexing 
Indexing of database tables can improve query performance, for example in 
situations where a number of tables are joined or a subsets of records are 
retrieved. 

In general, indexes keep information about where the record (row) with a 
particular key or attribute is physically located in a table. If a table is indexed, the 
database engine does not need to scan the entire table to look for a row with the 
specific key or attribute. Instead of scanning the entire table, the database reads 
the index entries and directly retrieves the rows from the table. It is typically 
better to scan indexes than the entire table.

Two types of indexes 
In this section we provide a brief description of index types. They are:

� Unique: Each row is uniquely identified by the value of the index.

� Non-unique: The value of the index can identify one or more rows in the 
table.

Select 
Sum (Sales)...
Where Product in ( 'Cola','Root 
Beer')
Group by Product

DB2 Optimizer

1. Base data?

Fetch & Sum 
n rows

3. Full Aggregate? 
Simple Fetch

2. Partial Aggregate? 
Fetch & Sum

Optimizer transparently
rewrites incoming queries
190 Dimensional Modeling: In a Business Intelligence Environment



In addition, indexes can differ based on their physical organization:

� B-Tree: Leaf nodes contain the value of the index and a pointer to the 
physical row. Use this type of index for attributes with high cardinality, such as 
PK or FK.

� Bitmap: Each unique value has a corresponding bitmap where each bit 
represents each row in the table, and value 1 in the bitmap means the 
corresponding row has this value. Use this type of index for attributes with low 
cardinality. An example is a field storing a status such as active or inactive.

Clustering
B-tree indexes can also be clustered. Here physical rows are sorted in order of 
the index, which can dramatically decrease the number of I/O operations when 
tables are read in order of index.

Clustered indexes are most efficient if no modification to tables are performed 
after the clustered index is created. If new rows are added or old rows are 
updated and/or deleted, the efficiency of a clustered index decreases because 
the rows are no longer in the physical order of the index. To correct this, you 
should recreate clustered indexes from time to time. Although, this can be a 
rather expensive operation if the tables become very large. In some RDBMS, 
indexes can be partitioned in a similar way that tables are partitioned. That is, 
some part of the indexes can be put in separate logical spaces. This can also 
improve query response time since some parts of index (index partitions) can be 
completely eliminated from the scan. 

Index maintenance
In addition to the advantages that indexes typically bring, there also costs. 
Indexes require additional space and also increase processing time when 
records are inserted, deleted, or updated. For example, when a row is updated, 
the RDBMS must also delete the old index entries corresponding to old values 
and add new index entries for new values of updated columns in the row.

Indexes for star schema
To summarize, the star schema model consists of dimension and fact tables. 
A fact table contains facts and foreign keys (FK) of dimensions. The fact table 
foreign key (FK) points to corresponding primary keys (PK) in the dimension 
tables. Dimension tables consist of a primary key and attributes that describe the 
measures of the fact table.

Note: Activities that may help in maintaining indexes are:

� Use the run statistics utility for all tables and all indexes.
� Reorganize clustered indexes.
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Fact tables may have one composite primary key to identify a unique set of 
measures and foreign keys (FK). If the set of foreign keys is not unique, we can 
introduce one or more degenerate dimensions, which, along with the FKs, will 
make it a unique key.

Indexes for dimensions
Indexing dimension tables is an iterative activity. Dimension tables may have 
many indexes, and those listed below should be considered as mandatory:

� One unique B-tree index for the primary key (PK) identifying the row in 
dimension table.

� For each attribute corresponding to a dimension hierarchy level one, a 
non-unique index should be used - unless it is snowflaked.

� One or more additional non-unique indexes on attributes, to be used as filters 
in queries.

� Non-unique B-tree index for the foreign key of a snowflaked dimension table.

Indexes for a fact table
First consider if we need to ensure uniqueness within the fact table. If yes, then 
create a unique B-tree index from foreign keys, and degenerate dimensions if 
applicable.

Then create a non-unique non-clustering B-tree index for each foreign key and 
degenerate dimensions.

Do not index numeric facts attributes. If you have need to filter facts by some 
numeric, you may introduce a new dimension such as a fact value band. This 
table may store band range of values, such as100-9900 and 9901-99992. You 
can also address this need with an OLAP reporting application. However, we 
show a technique that can be used to index facts. It is discussed in more detail in 
“Selective indexes” on page 194

Note: The RDBMS optimizer decides when to use and when to not use 
indexes, using table and index statistics to make the decision.

Note: The type of indexes you choose depends on attribute cardinality and on 
the capabilities of underlying indexes. We suggest using B-tree for high 
cardinality attributes and Bitmap for low or medium cardinality attributes. For 
example, if attribute values are highly duplicated, such as gender, status, or 
color attributes, consider using bitmap indexes. Bitmap indexes, if well 
designed, can dramatically improve query response times. Multidimensional 
clustered (MDC) or block indexes (see “MDC indexes” on page 194) are 
suitable for indexing fact table FKs and degenerate dimensions. 
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Vendor specific indexing techniques
Several vendors offer special proprietary types of indexes, designed for 
optimizing queries, for example, the multidimensional clustered (MDC) indexes 
in IBM DB2 or generalized key (GK) indexes in IBM Informix Extended Parallel 
Server (XPS).

Generally these indexes are defined either on one, or more than one, table (GK 
indexes) or on clusters of values from various attributes (MDC indexes). The 
primary goal of such advanced indexing is to eliminate unnecessary joins and 
table scans, and to reduce query response time. Generalized key indexes 
provide the following three types of advanced indexes that can improve OLAP 
query performance:

� Join indexes
� Virtual indexes
� Selective indexes

Join index
This capability allows you to create an index on a fact table that contains 
attributes of the dimension table. Using this index can eliminate the need to join 
the tables.

For example, if we have a SALES fact table, with item and sales amount, and the 
dimension table PRODUCT, describing items that have attribute BEVERAGE, 
then you can create an index on the fact table containing BEVERAGE of each 
item. As an example, you can do that with the following command:

CREATE GK INDEX type_of_sale ON SALES
(SELECT PRODUCT.BEVERAGE FROM SALES, PRODUCT 
WHERE SALES.PRODUCT_KEY = PRODUCT.PRODUCT_KEY)

Then when querying for sales amounts of certain product types, the join of the 
SALES table and PRODUCT dimension can be eliminated. For example, 
consider the following query:

SELECT SUM(SALES_AMOUNT) FROM SALES, PRODUCT
WHERE SALES.PRODUCT_KEY = PRODUCT.PRODUCT_KEY AND PRODUCT.BEVERAGE = 
"SODA"

Virtual indexes
This capability allows you to create an index not only on one or more columns, 
but also on expressions based on those columns. This enables fast queries on 
computed values, and can save disk space as well.

For example, if you have a table with columns UNITS and UNIT_COST, you can 
create an index on the COST_OF_SALE as follows:
 Chapter 5. Dimensional Model Design Life Cycle 193



CREATE GK INDEX I_cost_of_sale on SALES (SELECT 
SALES.UNITS*SALES.UNIT_COST FROM SALES)

This index then speeds up queries such as the following:

SELECT * FROM SALES WHERE UNITS*UNIT_COST >60

Selective indexes
This capability enables you to index only part of a large table, saving disk space 
and speeding up the queries.

For example, you can create an index such as the following:

CREATE GK INDEX since1995 ON SALES (SELECT AMOUNT FROM SALES JOIN 
DATE_DIM ON SALES.DAY_DIM_KEY=DATE_DIM.DAY_DIM_KEY WHERE DATE_DIM.YEAR 
>=1995)

Then you can create a fast query such as this:

SELECT * FROM SALES WHERE amount >500 AND YEAR >=1995

MDC indexes
IBM DB2 V8.x enables you to create advanced clustered indexes, also known as 
multidimensional clustered (MDC) indexes, which are optimized for OLAP 
queries. MDC indexes are based on blocks (extents), while traditional indexes 
are based on rows. Therefore in an MDC index, the leaf entries point to blocks of 
pages which have rows with the same value of the columns. Traditional index leaf 
entries point to a physical row on a page. MDC indexes are clustered as rows 
and grouped by values of columns in the indexes. At least one block is created for 
each unique value of a dimension. 

A cell is a unique combination of values across all dimensions. Data in the MDC 
tables is clustered via cells. 

When creating MDC tables, a blocked index is created for each dimension and 
one covering all dimensions. Blocked indexes optimize query response time 
because the optimizer can quickly identify blocks of pages with required values in 
particular columns. Further, the maintenance of MDC tables is simplified as no 
data reorganization is needed. If there is no cell for new or updated rows or if all 
blocks for this cell are full, another block is allocated and a new entry for this 
block is added into block indexes.

Note: Virtual indexes are useful when a fact table contains derived facts. 
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You can find a more detailed example of indexing in 6.5.2, “Indexing for 
dimension and fact tables” on page 324, which includes the following topics:

� Indexes for the star schema (includes indexing for dimensions and facts)
� Differences between indexed and non-indexed star schemas
� Access plans for querying an indexed star schema with SQL
� Access plans for querying a non-indexed star schema with SQL

5.7.4  Partitioning
Partitioning a table divides the table by row, by column, or both. If a table is 
divided by column, it is said to be vertically partitioned. If by row, it is said to be 
horizontally partitioned. Partitioning large fact tables improves performance 
because each partition is more manageable and provides better performance 
characteristics. Typically, you partition based on the transaction date dimension 
in a dimensional model. For example, if a huge fact table has billions of rows, it 
would be ideal for one month of data to be assigned its own partition.

Partitioning the data in the data warehouse enables the accomplishment of 
several critical goals. For example, it can:

� Provide flexible access to data

� Provide easy and efficient data management services

� Ensure scalability of the data warehouse

� Enable elements of the data warehouse to be portable. That is, certain 
elements of the data warehouse can be shared with other physical data 
warehouses, or archived on other storage media.

Guidelines for partitioning star schema data are explained below:

� A large fact table with a large number of rows should be partitioned based on 
the date dimension. 

� Depending upon the growth of the fact table, an individual partition may be 
created for each unique months of data or each unique quarter of data. 

� Large dimension tables, such as customer table of a government agency, 
having millions of customers may also be partitioned.

Note: When designing MDC tables, the cost of disk space should be 
considered. Although block indexes demand less disk space, the minimal disk 
space needed for data in MDC tables is the cartesian product of all 
cardinalities of all dimensions multiplied by block (extent) size.
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We usually partition large volumes of current detail data by dividing it into smaller 
segments. Doing that helps make the data easier to:

� Restructure
� Index
� Sequentially scan
� Reorganize
� Recover
� Monitor

In addition, other advantages of partitioning are:

� Improved response times because the SQL query only accesses the partition 
of data needed to answer the query. 

� Partitions can be more easily maintained compared to one large table.

� Involves no extra cost, as most partitioning capability is typically included as 
part of the RDBMS.

Every database management system (DBMS) has its own specific way of 
implementing physical partitioning, and they all can be quite different. For 
example, it is an important consideration whether or not the DBMS also supports 
partition indexing. Instead of DBMS or system level partitioning, you can 
consider partitioning by application. This would provide flexibility in defining data 
over time, and portability in moving to the other data warehouses. Notice that the 
issue of partitioning is closely related to multidimensional modeling, data 
granularity modeling, and the capabilities of a particular DBMS to support data 
warehousing.

5.8  Meta data management
Figure 5-39 on page 197 shows that the meta data management block spans the 
entire DMDL. That is, every phase of dimensional modeling produces some level 
of meta data. 
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Figure 5-39   Dimensional Model Design Life Cycle

In the traditional development cycle, a model sees only sparse use after 
completion. This is typically when changes need to be made, or when other 
projects require the data. In the data warehouse, however, the model is used on 
a continuous basis. The users of the data warehouse constantly reference the 
model to determine the data they want to use in their data analysis. The rate of 
change of the data structure in a data warehouse is much greater than that of 
operational data structures. Therefore, the technical users of the data warehouse 
(administrators, modelers, and designers, as examples) will also use the model 
on a regular basis.

This is where the meta data comes in. Far from just a pretty picture, the model 
must be a complete representation of the data being stored. 

To properly understand the model, and be able to confirm that it meets 
requirements, you must have access to the meta data that describes the 
dimensional model in business terms that are easily understood. Therefore, 
non-technical meta data should also be documented in addition to the technical 
meta data. 
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At the dimensional model level, a list should be provided of what is available in 
the data warehouse. This list should contain the models, dimensions, facts, and 
measures available as these will all be used as initial entry points for data 
analysis.

For each model, provide a name, definition, and purpose. The name simply gives 
something to focus on when searching. Usually, it is the same as the fact. The 
definition identifies what is modeled, and the purpose describes what the model 
is used for. The meta data for the model should also contain a list of dimensions, 
facts, and measures associated with it, as well as the name of a contact person 
so that users can get additional information when there are questions about the 
model.

A name, definition, and aliases must be provided for all dimensions, dimension 
attributes, facts, and measures. Aliases are necessary because it is often difficult 
to come to agreement on a common name for any widely used object. For 
dimensions and facts, a contact person should be provided.

Meta data for a dimension should also include hierarchy, change rules, load 
frequency, and the attributes, facts, and measures associated with the 
dimension. The hierarchy defines the relationships between attributes of the 
dimension that identify the different levels that exist within it. For example, in the 
seller dimension we have the sales region, outlet type (corporate or retail), outlet, 
and salesperson, as a hierarchy. This documents the roll-up structure of the 
dimension. Change rules identify how changes to attributes within a dimension 
are dealt with. In some instances, these rules can be different for individual 
attributes. Record change rules with the attributes when this is the case. The 
load frequency allows the user to understand whether or not data will be 
available when needed.

The attributes of a dimension are used to identify which facts to analyze. For 
attributes to be used effectively, meta data about them should include the data 
type, domain, and derivation rules. At this point, a general indication of the data 
type (such as character, date, and numeric) is sufficient. Exact data type 
definitions can be developed during design. The domain of an attribute defines 
the set of valid values. For attributes that contain derived values, the rules for 
determining the value must be documented. 

Meta data about a fact should include the load frequency, the derivation rules 
and dimensions associated with the fact, and the grain of time or date for the 
fact. Although it is possible to derive the grain of time for a fact through its 
relationship to the time dimension, it is worthwhile explicitly stating it here. It is 
essential for proper analysis that this grain be understood.
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5.8.1  Identifying the meta data
The following meta data is collected during the different phases of the DMDL:

� Identify business process: The output of this phase results in the 
requirements gathering report. This report primarily consists of the business 
requirements for the selected business for which you will design the 
dimensional model. In addition to this, it also consists of various business 
processes, owners, source systems involved, data quality issues, common 
terms used across business processes and other business-related meta data. 

� Identify the grain: The output of this phase results in the grain definition 
report, which consists of one or multiple definitions of the grain for the 
business process for which the dimensional model is being designed. Also 
the type of fact table (transaction, periodic, or accumulating) being used is 
mentioned. The grain definition report also includes high level preliminary 
dimensions and facts.

� Identify the dimensions: The meta data documented for this phase contains 
the information as shown Table 5-33:

Table 5-33   Identify the dimensions phase meta data

Dimension meta data Description

Name of dimension Name of the dimension table.

Business definition Business definition of the dimension. 

Alias Specifies the other known name by which the business 
users know the dimension. 

Hierarchy Defines the hierarchies present inside the dimension, such 
as balanced, unbalanced, or ragged.

Change rules Specify how to handle slowly changing dimension (type-1, 
type-2, or type-3) or fast changing dimension.

Load frequency The frequency of load for this dimension, such as daily, 
weekly, or monthly.

Load statistics Consists of meta data such as:
 Last load date: N/A
 Number of rows loaded: N/A

Usage statistics Consists of meta data such as:
 Average Number of Queries/Day: N/A 
 Average Rows Returned/Query: N/A 
 Average Query Runtime: N/A
 Maximum Number of Queries/Day: N/A
 Maximum Rows Returned/Query: N/A
 Maximum Query Runtime: N/A
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Archive rules Specifies whether or not data is archived.

Archive statistics Consists of meta data such as:
 Last Archive Date: N/A
 Date Archived to: N/A

Purge rules Specifies any purge rules. For example, customers who 
have not purchased any goods from the store in the past 48 
months will be purged on a monthly basis.

Purge statistics Consists of meta data such as:
 Last Purge Date: N/A
 Date Purged to: N/A

Data quality Specifies data quality checks. For example, when a new 
customer is added, a search determines if the customer 
already does business with another location. In rare cases 
separate branches of a customer are recorded as separate 
customers because this check fails. 

Data accuracy Specifies the data accuracy. For example, incorrect 
association of locations of a common customer occur in 
less than .5% of the customer data.

Key The key to the dimension table is a surrogate key. 

Key generation method This meta data specifies the process used to generate a 
new surrogate key for a new dimension row. For example, 
when a customer is copied from the operational system,
the translation table (a staging area persistent table) is 
checked to determine if the customer already exists in the 
dimensional model. If not, a new key is generated and the 
key along with the customer ID and location ID are added 
to the translation table. If the customer and location already 
exist, the key from the translation table is used to determine 
which customer in the dimensional model to update.

Dimension meta data Description
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Source This includes the following meta data:

 Name of the source system table: <Table Name>

 Conversion rules: This specifies how the insert/update 
to the dimension table occurs. For example, rows in each 
customer table are copied on a daily basis. For existing 
customers, the name is updated. For new customers, once 
a location is determined, the key is generated and a row 
inserted. Before the update/insert takes place, a check is 
performed for a duplicate customer name. If a duplicate is 
detected, a sequence number is appended to the name. 
This check is repeated until the name and sequence 
number combination is determined to be unique. Once 
uniqueness has been confirmed, the update/insert takes 
place.

 Selection logic: Only new or changed rows are
selected.

Conformed dimension This specifies if the dimension is a conformed dimension. 

Role-playing dimension This specifies if the dimension is being implemented using 
the role-playing concept. 

Dimension meta data Description
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The meta data information shown in Table 5-33 on page 199 needs to be 
captured for all dimensions present in the dimensional model.

� Identify the facts: The meta data documented for this phase contains the 
information as shown Table 5-34.

Table 5-34   Identify the facts phase meta data

Attributes
(All columns of a 
dimension)

The meta data for all the dimension attributes includes the 
following:

 Name of the attribute: <Attribute Name>

 Definition of the attribute: Attribute definition

 Alias of the attribute: <Attribute Name>

 Change rules for the attribute: For example, when an 
attribute changes, then use Type-1, Type-2, or Type-3 
strategy to handle the change.

 Data Type for the attribute: Data type, such as Integer 
or Character.

 Domain values for the attribute: Domain range such as 
1-99.

 Derivation rules for the attribute: For example, a system 
generated key of the highest used customer key +1 is 
assigned when creating a new customer and location entry.

 Source: Specifies the source for this attribute. For 
example, for a surrogate key, the source could be a system 
generated value. 

Facts This specifies the facts that can be used with this 
dimension.
Note: Semi-additive facts are additive across only some 
dimensions.

Subsidiary dimension This specifies any subsidiary dimension associated with 
this dimension. 

Contact person This specifies the contact person from the business side 
responsible for maintaining the dimension. 

Fact table meta data Description

Name of fact table The name of the fact table.

Dimension meta data Description
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Business Definition The business definition of the fact table. 

Alias The alias specifies another name by which the fact table 
is known. 

Grain This specifies the grain of the fact table.

Load frequency The frequency of load for this fact table such as daily, 
weekly or monthly.

Load statistics Consists of meta data such as:
 Last load date: N/A
 Number of rows loaded: N/A

Usage statistics Consists of meta data such as:
 Average Number of Queries/Day: N/A 
 Average Rows Returned/Query: N/A 
 Average Query Runtime: N/A
 Maximum Number of Queries/Day: N/A
 Maximum Rows Returned/Query: N/A
 Maximum Query Runtime: N/A

Archive rules Specifies whether or not the data is archived. For 
example, data will be archived after 36 months on a 
monthly basis.

Archive statistics Consists of meta data such as:
 Last Archive Date: N/A
 Date Archived to: N/A

Purge rules Specifies any purge rules. For example, data will be 
purged after 48 months on a monthly basis.

Purge statistics Consists of meta data such as:
 Last Purge Date: N/A
 Date Purged to: N/A

Data quality Specifies quality checks for the data. For example, 
assume that we are designing a fact table for an 
inventory process. Inventory levels may fluctuate 
throughout the day as more stock is received into 
inventory from production and stock is shipped out to 
retail stores and customers. The measures for this fact 
are collected once per day and thus reflect the state of 
inventory at that point in time, which is the end of the 
working day.

Fact table meta data Description
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Data accuracy This specifies the accuracy of fact table data. For 
example, assume that we are designing a fact table for 
the inventory process. We may conclude that the 
measures of this fact are 97.5% accurate at the point in 
time they represent. This may be based on the results 
of physical inventories matched to recorded inventory 
levels. No inference can be made from these measures 
as to values at points in time not recorded.

Grain of the date 
dimension

Specifies the grain of the date dimension. For example, 
the date dimension may be at the day level.

Grain of the time 
dimension

Specifies the grain of the time dimension. For example, 
the time dimension may be at the hourly level.

Key The key of the fact table typically consists of 
concatenation of all foreign keys of all dimensions. In 
some cases, the degenerate dimension may also be 
concatenated to guarantee the uniqueness of the 
primary composite key. 

Key generation method The key generation method specifies how all the foreign 
keys are concatenated to create a primary key for the 
fact table. Sometimes a degenerate dimension may be 
needed to guarantee its uniqueness. This is shown in 
Figure 5-32 on page 179.

Source The meta data for the source includes the following:

 Name of the Source: <Source Name>

 Conversion rules for the source: Rules regarding the 
conversion. For example, each row in each inventory 
table is copied into the inventory fact on a daily basis.

 Selection Logic: The selection logic behind selecting 
the rows.

 Facts This specifies the facts involved in the fact table. They 
could be:
 Additive
 Non-additive
 Semi-additive
 Pseudo
 Derived
 Factless fact
 Textual 

Fact table meta data Description
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� Verify the model: This phase involves documenting meta data related to the 
testing (and its result) done on the dimensional model. Any new requests 
made or changes to the requirements are documented.

� Physical Design Considerations: The meta data documented for this phase 
contains the information as shown in Table 5-35.

Table 5-35   Physical design considerations meta data 

Conformed fact This specifies whether or not there are any conformed 
facts in the fact table.

Dimensions This specifies the dimensions that can validly use these 
facts. Note: Some facts are semi-additive and can only 
be used across certain dimensions.

Contact person This specifies the contact person from the business side 
responsible for maintaining the fact table. 

Physical design 
consideration meta data

Description 

Aggregation The aggregation meta data includes the following:

 Number of aggregate tables

 Dimension tables involved in creating aggregates
 Dimension hierarchies involved in creating 

aggregation

 Fact table and facts involved in creating aggregates.

Other information relating to the aggregate tables 
includes the following:
 Load frequency
 Load statistics
 Usage statistics
 Archive rules
 Archive statistics
 Purge rules
 Purge statistics
 Data quality
 Data accuracy

Indexing This specifies the indexing strategy used for dimension 
and fact tables.

Fact table meta data Description
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5.9  Summary
In 5.2.2, “Identify business process” on page 110, we created an enterprise 
business process list for which there are business needs to build a data mart or 
dimensional model. 

After identifying all the business processes, we assessed each of them for a 
number factor, such as:

� Complexity of the source systems of the business process
� Data availability of these systems
� Data quality of these systems
� Strategic business significance of the business process

After having assessed the various business processes, we developed the final 
prioritization list shown in Table 5-36. 

Table 5-36   Enterprise-wide business process priority listing

Table 5-36 helped us to prioritize the business processes for which we can 
design the dimensional models. In this chapter, we chose the top priority retail 
sales business process and designed a data mart using the DMDL. After we 
finish with the design of one data mart, we can then move to the next priority data 
mart from Table 5-36.

The DMDL helps us segment the larger task of building data marts for the entire 
organization by choosing a step by step approach of handling each business 

Name Complexity Availability Quality Significanc
e

Points

Retail sales Low (3) High (3) High (3) High (6) 15

Finance High (1) High (3) Medium (2) Medium (4) 10

Servicing Low (3) High (3) Medium (2) High (6) 14

Marketing Medium (2) Medium (2) Medium (2) Medium (4) 10

Shipment Low (3) Low (1) High (3) Low (2) 9

Supply 
management

Medium (2) Low (1) Medium (2) Low (2) 7

Purchase 
order

High (1) Medium (1) Low (1) Medium (4) 7

Labor Low (3) Low (1) Low (1) High (2) 7
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process, one at a time. This approach enables you to start small, and complete 
the project in planned phases. 

In addition, you remember that data warehousing itself is a process. That is, 
typically you are never really finished. You will undoubtedly continue to add 
people, processes, and products to your enterprise. Or, specifications about 
those people, processes, and products will change over time. As examples, 
people get married, have children, and move. This requires modifying, for 
example, dimensional data that describes those people.

So, as with any data warehousing project, building dimensional models is a 
continuous and ongoing project. Having a defined DMDL, and using suggestions 
in this redbook, can help you to build a structured, controlled, planned, and 
cost-effective approach to building several dimensional models for your data 
warehousing environment which are integrated by using conformed dimensions 
and conformed facts.
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Chapter 6. Modeling considerations

In this chapter, we discuss considerations, and challenges that may arise, when 
designing dimensional models. As examples:

� Converting an E/R model to dimensional model. How do you identify fact and 
dimension tables from an E/R model? And, how do you convert an E/R model 
to a dimensional model?

� Identifying the grain.

� Working with degenerate dimensions, dimension hierarchies, time as a fact or 
dimension, slowly changing dimensions, fast changing dimensions, 
identifying and handling snowflakes, identifying garbage dimensions, 
handling multi-valued dimensions, use of bridge tables, handling 
heterogeneous products, and handling hot swappable dimensions (also 
referred as profile tables).

� Working with additive and semi-additive facts, composite key design, and 
event fact tables.

� What about physical design activities, such as indexing? 

� Working with changes to data, structure, and requirements.

6
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6.1  Converting an E/R model to a dimensional model
In this section we describe how to convert an E/R model to a dimensional model. 
A dimensional model can be created from the enterprise data warehouse or 
directly from OLTP source systems. For additional information, refer to:

� Enterprise data warehouse: “Data warehouse architecture choices” on 
page 57.

� OLTP Source systems: “Data modeling: The organizing structure” on page 47 
in the following sections:

– “Independent data mart architecture” on page 59
– “Dependent data mart architecture” on page 61

The following are the steps for converting an E/R model to a dimensional model:

� Identify the business process from the E/R model.
� Identify many-to-many tables in the E/R model to convert to fact tables.
� Denormalize remaining tables into flat dimension tables.
� Identify date and time from the E/R model.

The steps are explained in detail in the following sections.

6.1.1  Identify the business process from the E/R model 
It is important to understand that an E/R model can be segmented into 
multiple dimensional models. An E/R model (which may be an enterprise data 
warehouse or an OLTP source system) consists of several business 
processes. This is depicted in Figure 6-1 on page 211. For example, an E/R 
model for an ERP system includes several business processes, such as retail 
sales, order management, procurement, inventory, and store and warehouse 
inventory management. 
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Figure 6-1   E/R model consists of several business processes

6.1.2  Identify many-to-many tables in E/R model 
Once the business processes are separated, the next step is to identify the 
many-to-many tables (many-to-many relationships) in the E/R model and convert 
them to dimensional model fact tables. These many-to-many relationships 
contain numeric and additive non-key facts which generally become facts inside 
the fact table.

The idea behind this step is to identify the transaction-based tables that serve to 
express many-to-many relationships inside an E/R model. 

Every E/R model consists of transaction-based tables which constantly have 
data inserted, or are updated with data, or have data deleted from them. Some of 
these tables also express a many-to-many relationship. For example, in an ERP 
database, there are transaction tables, such as Invoice and Invoice_Details, 
which are constantly inserted and updated because they are transaction-based 
tables. However, tables such as Employee and Products in an E/R model may 
be fairly static. 

Description of many-to-many relationships
Many-to-many (m:n) relationships add complexity and confusion to the model 
and to the application development process. The key to resolving m:n 
relationships is to separate the two entities and create two one-to-many (1:n) 

Business
Process #1

Business
Process #3

Business
Process #2
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relationships between them with a third intersect entity. The intersect entity 
usually contains attributes from both connecting entities.

To resolve an m:n relationship, analyze the business rules again. Have you 
accurately diagrammed the relationship? The telephone directory example has a 
m:n relationship between the name and fax entities, as Figure 6-2 depicts. The 
business rules say, “One person can have zero, one, or many fax numbers; a fax 
number can be for several people.” Based on what we selected earlier as our 
primary key for the voice entity, an m:n relationship exists.

A problem exists in the fax entity because the telephone number, which is 
designated as the primary key, can appear more than one time in the fax entity; 
this violates the qualification of a primary key. Remember, the primary key must 
be unique.

Figure 6-2   Telephone directory diagram to show many to many relationship

To resolve this m:n relationship, you can add an intersect entity between the 
name and fax entities, as depicted in Figure 6-3 on page 213. The new intersect 
entity, fax name, contains two attributes, fax_num and rec_num. 
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Figure 6-3   Many-to-many relationship

Another example for many-to-many relationship is shown in Figure 6-4.

Figure 6-4   Many-to-many relationship

In Figure 6-4, the many-to-many relationship shows that employees use many 
programming skills on many projects and each project has many employees with 
varying programming skills.

6.1.3  Denormalize remaining tables into flat dimension tables
The final step involves taking the remaining tables in the E/R model and 
denormalizing them into dimension tables for the dimensional model. The 
primary key of each of the dimensions is made a surrogate (non-intelligent, 
integer) key. This surrogate key connects directly to the fact table. 

Programming 
Skills

ProjectsHasEmployee
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6.1.4  Identify date and time dimension from E/R model
The last step generally involves identifying the date and time dimension. Dates 
are generally stored in the form of a date timestamp column inside the E/R 
model. You will observe that date and time-related columns are generally found 
in the transaction-based tables. 

We explain the process of converting an E/R model to a dimensional model in the 
section below. 

Example: An E/R model conversion
We convert the E/R model shown in Figure 6-5 to a dimensional model using the 
following steps:

1. Identify the business process: We discussed this step in detail in “Identify 
the business process from the E/R model” on page 210. The business 
process we identified for our example is retail sales. The E/R model for this 
retail sales schema is shown in Figure 6-5. 

Figure 6-5   E/R model for retail sales business process

2. Identify the many-to-many tables in the E/R model to convert them to fact 
tables. After identifying the business process as retail sales, and identifying 
the E/R model as shown in Figure 6-5, the next step is to identify the 
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many-to-many relationships that exist inside the model. In order to find this, 
we must segregate the tables inside the E/R model into two types. 
Transaction-based tables and Non-Transaction based tables, as shown in 
Table 6-1. 

What is a transaction-based table? In an E/R model, it is one which is 
generally involved in storing facts and measures about the business. Such 
tables generally store foreign keys and facts, such as quantity, sales price, 
profit, unit price, and discount. In transaction tables, records are usually 
inserted, updated, and deleted as and when the transactions occur. Such 
tables also in many ways represent many-to-many relationships between 
non-transaction-based tables. Such tables are larger in volume and grow in 
size much faster than the non-transaction-based tables.

What is a non-transaction-based table? This is an E/R model which is 
generally involved in storing descriptions about the business. Such tables 
describe entities such as products, product category, product brand, 
customer, employees, regions, locations, services, departments, and 
territories. In non-transaction tables, records are usually inserted and there 
are fewer updates and deletes. Such tables are far smaller in volume and 
grow very slowly in size, compared to the transaction-based tables.

Table 6-1   Transaction and Non-transaction tables in the E/R model

Note: Fact tables in a dimensional model express the many-to-many 
relationships between dimensions. This means that the foreign keys in the fact 
tables share a many-to-many relationship.

Transaction tables Non-transaction tables

Store_BILLING
[This transaction table stores the 
BILL_NUMBER, Store Billing date, and 
time information. The detailed Bill 
information is contained inside the 
Store_Billing_Details table.]

Employees: Stores information about 
employees.

Store_Billing_Details
[This transaction table stores the details 
for each store bill.]

Department: Stores department 
information for every employee.

Store: Stores the name of the store and 
type of store information.

Store_Region: Stores the region, county, 
state, and country to which the store 
belongs.
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The transaction tables are identified in Table 6-1 on page 215, and we depict 
them in Figure 6-6 on page 217.

Suppliers: Stores the supplier name and 
supplier manager-related information.

Supplier_Type: Stores supplier type 
information.

Products: Stores information relating to 
products.

Brand: Stores brand information to which 
different products belong.

Categories: Stores categories information 
to which different product brands belong.

Packaging: Stores packaging-related 
information for each product.

Customers: Stores customer-related 
information.

Region: Stores different regions to which 
customers belong.

Territories: Stores territories to which 
different customers belong.

Customer_Type: Stores customer 
classification information.

Transaction tables Non-transaction tables
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Figure 6-6   Identifying transaction-based tables in the E/R model

The Store_BILLING and Store_Billing_Details tables express a many-to-many 
relationship that exists between Employee, Store, Customers, and Products. 
Some of the relationships are explained below:

� Each Employee can sell many products and each Product could be sold by 
many Employees.

� Each Store could sell many Products and each Product could be sold by 
many Stores.

� Each Customer could buy many products and each product could be bought 
by many Customers.

� Each Employee could sell to many Customers and each Customer could 
purchase from many Employees.

Figure 6-7 on page 218 shows that the Store_BILLING and Store_Billing_Details 
transaction tables express many-to-many relationships between the different 
non-transaction tables. 

Transaction Based Tables

Note: The many-to-many tables in the E/R model are converted to 
dimensional model fact tables. The many-to-many tables in the E/R model are 
generally the transaction-oriented tables.
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Figure 6-7   Identifying many-to-many relationships in an E/R model

The Store_BILLING and Store_Billing_Details tables are the tables that identify 
the many-to-many relationship between Employee, Products, Store, Customer, 
and Supplier tables. The Store_BILLING table stores billing details for an order.

After having identified the many-to-many relationships in the E/R model, we are 
able to identify the fact table as shown in Figure 6-8.

Figure 6-8   Fact table 

The fact table design may change depending upon the grain chosen. 

3. Denormalize remaining tables into flat dimension tables: After we 
identified the fact table in Step 2, the next step is to take the remaining tables 

Employee

Store Customer

Transaction Based Tables

Products

Supplier

Foreign Keys

Degenerate 
Dimension

Facts

Note: Store_BILLING and 
Store_Billing_Details tables 
convert to a Fact table
218 Dimensional Modeling: In a Business Intelligence Environment



in the E/R model and denormalize them into dimension tables. The primary 
key of each of the dimensions is made a surrogate (non-intelligent, integer) 
key. This surrogate key connects directly to the fact table. 

Table 6-2 shows the various E/R tables (see E/R model in Figure 6-6 on 
page 217) that have been denormalized into dimension tables.

Table 6-2   E/R model to dimension model conversion

Figure 6-9 on page 220 shows that the Customers, Region, Territories, and 
Customer_Type tables in the E/R model are denormalized to form a Customer 
dimension table. The Customer dimension table has a surrogate key.

Name of tables in E/R model Corresponding 
denormalized 
dimension table

Refer to 
figure 

Customers, Region, Territories, and 
Customer_Type

Customer Figure 6-9

Products, Brand, Categories, and Packaging Product Figure 6-10

Suppliers and Supplier_Type Suppliers Figure 6-11

Employees and Department Employees Figure 6-12

Store and Store_Region Store Figure 6-13
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Figure 6-9   Customer dimension table 

Figure 6-10 on page 221 shows that the Products, Brand, Categories, and 
Packaging tables in the E/R model are denormalized to form a product 
dimension table. The product dimension table has a surrogate key. 

(Denormalization of Customer 
Tables in the E/R Model)
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Figure 6-10   Product dimension

Figure 6-11 shows that the Suppliers and Supplier_Type tables in the E/R 
model are denormalized to form a Supplier dimension table. The Supplier 
dimension table has a surrogate key. 

Figure 6-11   Supplier dimension 

(Denormalization of 
Product Table in the 

E/R Model)

Supplier is handled as a 
Separate Supplier Dimension

(Denormalization of Supplier 
Tables in the E/R Model)
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Figure 6-12 shows that the Employees and Department tables in the E/R 
model are denormalized to form a Supplier dimension table. The Supplier 
dimension table has a surrogate key. 

Figure 6-12   Employee dimension

Figure 6-13 shows that the Store and Store_Region tables in the E/R model 
are denormalized to form a Store dimension table. The Store dimension table 
has a surrogate key. 

Figure 6-13   Store dimension table

The resulting dimensional model after we normalize the dimension tables is 
shown in Figure 6-14 on page 223.

(Denormalization of Employee 
and Department Tables in the 

E/R Model)

(Denormalization of Store 
and Store_Region Tables

in the E/R Model)
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Figure 6-14   Dimensional model after step 3

4. Add date and time dimensions: The last step involves identifying the date 
and time dimension. Dates are generally stored in the form of a date 
timestamp column inside the E/R model. 

The date and time are stored in the columns called Store_Billing_Date and 
Store_Billing_Time of the Store_BILLING table of the E/R model as shown in 
Figure 6-15.

Figure 6-15   Identifying date and time in the E/R model

The E/R models typically have some form of dates associated with them. These 
dates are generally stored in the transaction-based tables in the form of a date 
timestamp column. There may also be time associated with the business which 
is also stored in the form of a date timestamp column present inside the 
transaction-based tables.

After the date and time columns are identified in the E/R model, they are usually 
modeled as separate date and time dimensions as shown in Figure 6-16 on 
page 224.

Store Billing Date

Store Billing Time
 Chapter 6. Modeling considerations 223



The final dimensional model
The dimensional model that results from the steps taken is shown in Figure 6-16. 

Figure 6-16   The dimensional model

6.2  Identifying the grain for the model
The lowest level of data represented in a fact table is defined as grain. The focus 
of this section is to discuss the Identify the grain component in the DMDL, as 
depicted in Figure 6-17 on page 225.
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Figure 6-17   Dimensional Model Design Life Cycle

In this section we discuss the importance of having the grain defined at the most 
detailed, or atomic, level. When data is defined at a very detailed level, the grain 
is said to be high. When there is less detailed data, the grain is said to be low. For 
example, for date, a grain of year is a low grain, and a grain of day is a high grain. 
We also discuss when to consider separate grains for a single business process. 

6.2.1  Handling multiple, separate grains for a business process 
Typically separate business processes always require separate dimensional 
models with unique grain definitions. Each business process consists of several 
facts and dimensions which are different from the other business processes. As 
discussed in Chapter 5, “Dimensional Model Design Life Cycle” on page 103, we 
take the following steps to create a dimensional model:

� Identify business process.
� Identify grain.
� Identify dimensions.
� Identify facts.
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We explain the concept of multiple fact table grains in the following steps:

1. Business process: Assume that we are creating a dimensional model for the 
retail sales business of a big clothing merchandise brand which has stores all 
over the U.S. The business is interested in tracking the sales of the goods 
from all of its stores. It is also interested in analyzing the reasons for all of its 
returned clothing products at all stores and in analyzing all suppliers of 
products based on the percentage of defective returned goods. 

2. Identify the grain for the retail sales.

There are two separate grain definitions for the retail sales business process:

– For tracking sales in all clothing stores, the grain definition is: One single 
clothing line item on a bill.

– For tracking returned clothing goods in all stores, the grain definition is: 
Every individual clothing item returned by a customer to any store.

3. Identify the dimensions for the different grains.

– For grain 1 (sales tracking): product, time, customer, date, employee, 
supplier, and store

– For grain 2 (returned goods tracking): return date, purchase date, 
customer, store purchased, products returned, and reasons for return.

4. Identify the facts for the different grains.

– For grain 1 (sales tracking): unit price, discount, quantity sold, and 
revenue

– For grain 2 (returned goods tracking): revenue returned and quantity 
returned

Figure 6-18 on page 227 shows the dimensional model designed for the sales 
tracking in the retail sales business process having the grain equivalent to one 
single line item on a bill.

Note: A single business process may consist of more than one dimensional 
model. Do not force fit the different facts and dimensions which belong to 
different dimensional models into a single star schema. We strongly 
recommend that separate grains are identified for a business process when 
you are not able to fit facts or dimensions in a single star model.
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Figure 6-18   Retail sales business star schema for sales tracking

Figure 6-19 shows the dimensional model designed for the retail sales business 
process having the grain equivalent to every individual item returned by a 
customer to any store.

Figure 6-19   Retail Sales Business star schema for tracking returned goods

When to create separate fact tables
When designing the dimensional model for a business process, one or more fact 
tables can be created. Here are guidelines to consider when deciding to make 
one or more fact tables for designing the dimensional model for the business 
process:

� Facts that are not true (valid) to any given grain should not be forced into the 
dimensional model. Often facts that are not true to a grain definition belong to 
a separate fact table with its own grain definition.

� Dimensions that are not true (valid) to any given grain should not be forced 
into the dimensional model. Often such dimensions belong to a separate 
dimensional model with its own fact table and grain. 

� Separate fact tables (dimensional models) should always be created for each 
unique business process. 
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6.2.2  Importance of detailed atomic grain
The granularity may be defined as the level of detail made available in the 
dimensional model. The grain definition is extremely significant from a business, 
technical, and data mart project standpoint. 

It is extremely important that the grain definition is chosen at the most detailed 
atomic level. The atomic grain is important from three broad perspectives as we 
discuss below:

� From a business perspective:

From a business perspective, the grain of the fact table dictates whether or 
not we can easily extend the dimensional model to add new dimensions or 
facts as, and when, the business requirements change. A dimensional model 
designed at the lowest level grain (detail) is easy to change. New dimensions 
or facts can be added to the existing dimensional model without any change 
to the fact table grain, which means that new business requirements can be 
delivered from existing dimensional models without the need of much change 
to an existing one. This is good for businesses whose requirements typically 
change. 

The dimensional model should be designed at the most detailed atomic level 
even if the business requires less detailed data. This way the dimensional 
model has potential future capability and flexibility (regardless of the initial 
business requirements) to answer questions at a lower level of detail. 

To summarize the importance of grain from a business perspective, we look 
at an example. Assume your organization wants to analyze customer buying 
trends by product line and region so that you can develop more effective 
marketing strategies. Consider the following options:

– Customer by Product

The granularity of the fact table always represents the lowest level for 
each corresponding dimension. When you review the information from the 
business process, the granularity for customer and product dimensions of 
the fact table are apparent. Customer and product cannot be reasonably 
reduced any further. That is, they already express the lowest level of an 
individual record for the fact table. In some cases, product might be further 
reduced to the level of product component because a product could be 
made up of multiple components.

– Customer by Product by District

Because the customer buying trends that your organization wants to 
analyze include a geographical component, you still need to decide the 
lowest level for region information. The business process indicates that in 
the past, sales districts were divided by city. But now your organization 
distinguishes between two regions for the customer base: Region 1 for 
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California and Region 2 for all other states. Nonetheless, at the lowest 
level, your organization still includes sales district data, so district 
represents the lowest level for geographical information and provides a 
third component to further define the granularity of the fact table.

– Customer by Product by District by Day

Customer-buying trends always occur over time, so the granularity of the 
fact table must include a time component. Suppose your organization 
decides to create reports by week, accounting period, month, quarter, or 
year. At the lowest level, you probably want to choose a base granularity 
of day. This granularity allows your business to compare sales on 
Tuesdays with sales on Fridays, compare sales for the first day of each 
month, and so forth. The granularity of the fact table is now complete.

The decision to choose a granularity of day means that each record in the 
time dimension table represents a day. In terms of the storage 
requirements, even 10 years of daily data is only about 3,650 records, 
which is a relatively small dimension table.

� From a technical perspective: 

– From a technical perspective, the grain of the fact table has a major 
impact on the size of the star schema. The more atomic the grain, the 
bigger the size. 

– The atomic grain results in a huge dimensional model, which can impact 
the operating cost for performing related tasks such as ETL, as well as the 
performance.

� From a project task lists perspective: 

– The most detailed atomic grain means that the project team needs to 
represent the data in more detail. This means that the data mart 
development team will need to understand more E/R or data 
warehouse-related tables and their corresponding attributes. 

– The more detailed the grain, the more complex related procedures, such 
as ETL. This means designing more complex procedures and also 
maintaining more complex meta data. 

Factors to consider when deciding the grain, are as follows:

� Current Business Requirements: The primary factor to consider while 
deciding the dimensional model grain is the current business requirement. 
The basic minimum need of the dimensional model grain is to be able to 

Note: If the dimensional model is designed with a higher level grain (meanin it 
is highly aggregated and therefore contains less detailed data), there will be 
fewer dimensions available for use to perform detailed analyses. 
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answer the current business requirements. It is important to remember that 
the primary purpose for developing a dimensional model is to satisfy a set of 
business requirements and therefore the grain should be kept at a level of 
detail which satisfies those requirements.

� Future Business Requirements: Another important factor to always 
consider are the future business requirements. For example, if you design the 
model to be based on a weekly grain because the business requires only 
weekly data for its reports, then you may not be able to get reports based on 
daily data if the business requires daily data in the future. It is important to 
understand the potential future needs and perhaps design the model at a 
lower grain than dictated by the present requirements. However, storing the 
data at a more detailed grain means spending more on maintaining the more 
atomic grain, but without any present business value. So, it is important that 
when you design a model with more detailed grain than currently required, 
you understand the additional overhead costs and prepare satisfactory 
justification. 

How granularity affects the size of the database
The granularity of the fact table also determines how much storage space will be 
required for the database. For example, consider the following possible 
granularities for a fact table:

� Product by day by region
� Product by month by region

The size of a database that has a granularity of product by day by region would 
be much greater than a database with a granularity of product by month by 
region because the database contains records for every transaction made each 
day as opposed to a monthly summary of the transactions. You must carefully 
determine the granularity of your fact table because too fine a granularity could 
result in a huge database. Conversely, too coarse a granularity could mean the 
data is not detailed enough for users to perform meaningful queries.

6.2.3  Designing different grains for different fact table types
In the retail sales example, the grain is of the transaction fact table type.

There are three types of fact tables. They are:

� Transaction fact table
� Periodic fact table
� Accumulating fact table

The reason to show different types of fact tables is to emphasize that each 
typically has different types of grain associated with it. It is important that the 
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designer be aware of these fact table types so that the designer can use the most 
appropriate type of the fact tables.

There are also differences in ways the inserts and updates occur inside each of 
these fact tables. For example, with the transaction and periodic fact tables, only 
inserts take place and no rows are updated. With the accumulating fact table, the 
row is first inserted, and then subsequently updated as a milestone is achieved 
and facts are made available.

We now discuss each of the different fact tables.

Transaction fact table
A transaction-based fact table is a table that records one row per transaction. An 
example of a transaction-based fact table is shown in Figure 6-20 on page 232. 
Here the fact table records all transactions that happen for an individual account 
of a customer of a bank. Assume that a customer named Sherpa makes the 
following transactions in the month of August 2005 against his bank account: 

� Money Withdrawn: $400, Date: August 2, 2005, Time: 4:00AM

� Money Deposited: $300, Date: August 4, 2005, Time: 3:00AM

� Money Withdrawn: $600, Date: August 5, 2005, Time: 2:00PM

� Money Withdrawn: $900, Date: August 6, 2005, Time: 9:00PM

� Money Deposited: $900, Date: August 18, 2005, Time: 7:00AM

� Money Deposited: $800, Date: August 23, 2005, Time: 1:00AM

Figure 6-20 on page 232 shows that in a transaction fact table, a single row is 
inserted for each bank account transaction (deposit or withdrawal) that Sherpa 
makes. Important features about the transaction fact table are:

� A single row is inserted for each transaction.

� Typically, the date and time dimensions are represented at the lowest level of 
detail. For example, the date dimension may be represented at the day level 
and the time dimension may be represented at the hour or minute level. 

� The transaction fact table is known to grow very fast as the number of 
transactions increases. 
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Figure 6-20   Transaction fact table

Periodic fact table
A periodic fact table stores one row for a group of transactions made over a 
period of time. 

An example of a periodic-based fact table is shown in Figure 6-21 on page 233 
where the fact table records a single row per month for all transactions against an 
individual account. 

Assume that a customer named Sherpa makes the following transactions in the 
month of August 2005: 

� Money Withdrawn: $400, Date: August 2, 2005, Time: 4:00AM
� Money Deposited: $300, Date: August 4, 2005, Time: 3:00AM
� Money Withdrawn: $600, Date: August 5, 2005, Time: 2:00PM
� Money Withdrawn: $900, Date: August 6, 2005, Time: 9:00PM
� Money Deposited: $900, Date: August 18, 2005, Time: 7:00AM
� Money Deposited: $800, Date: August 23, 2005, Time: 1:00AM

In the transaction-based fact table, we stored six rows for the six transactions 
shown above. However, for the periodic-based fact table, we consider a time 
period (end of day, week, month, or quarter) for which we need to store the 
transactions as a whole. 

(Deposit or Withdrawal)
Transaction Type

6 Rows inserted (1 row for each Transaction)
Row 1: Withdrawal: $400,  Date: 2nd August 2,2005,   Time: 4:00AM
Row 2: Deposit:        $300, Date: 4th August 4,2005,     Time: 3:00AM
Row 3: Withdrawal: $600,  Date: 5nd August 5,2005,    Time: 2:00PM
Row 4: Withdrawal: $900,  Date: 6th August 6,2005,     Time: 9:00PM
Row 5: Deposit:        $900, Date: 18th August 18,2005, Time: 7:00AM
Row 6 :Deposit:        $800, Date: 23rd August 23,2005, Time: 1:00AM
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Figure 6-21 shows a periodic fact table. The grain of the fact table is chosen as 
the account balance per customer at the end of each month. Observe that we do 
not record each of the transaction dates separately, but instead use the Month 
dimension. 

Figure 6-21   Periodic fact table

The periodic fact table design consists of the Month table (Monthly grain). The 
periodic fact table MONTHLY_ACCOUNT consists of facts, such as 
Previous_Balance, Total_Deposit, Total_Withdrawal, and Available_Balance, 
which are true at the periodic month-end grain. 

Important features of the periodic fact table are:

� A single row is inserted for each set of activities over a period of time.

� Typically, the date and time dimensions are represented at the higher level of 
detail. For example, the date dimension may be represented at the month 
level (instead of day) and the time dimension may be represented at the hour 
level (instead of seconds or minutes). 

� The periodic fact table is known to grow comparatively slowly in comparison 
to the transaction fact table. 

Accumulating fact table
An accumulating fact table stores one row for the entire lifetime of an event. For 
example, from the lifetime of a credit card application being sent to the time it is 

Note: It is important to understand that when we design a periodic fact table, 
certain dimensions are not defined when compared to a transaction fact table 
type. For example, when comparing the transaction fact table and periodic fact 
table, we see that certain dimensions such as Transaction_Type, Branch, and 
Transaction_Date are not applicable at the Periodic (Monthly) grain. 

1 Row for every Customer every Month
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accepted. Another example could be the lifetime of a job or college application 
being sent to the time it is accepted or rejected by the college or the job posting 
company.

To understand the concept of an accumulating fact table, consider that a big 
recruitment company advertises vacancies in many jobs relating to software, 
hardware, networking, apparel, marketing, sales, food, carpentry, plumbing, 
housing, house repairs, mechanical, teaching high school, teaching college, 
senior management, and working in restaurants. About 100 000 vacancies are 
advertised, in all major newspapers every month. The recruitment company 
senior management wants to better understand how efficiently their recruitment 
staff works in matching potential job candidates with the jobs they seek. The 
senior management wants to understand how long it takes for a prospective 
candidate to get a job from the time the resume is sent for a particular job 
vacancy.

The accumulating fact table is shown in Figure 6-22, where the fact table records 
a single row per job vacancy advertised by the recruitment company. 

Figure 6-22   Accumulating fact table

Note: Accumulating fact tables are typically used for short-lived processes 
and not constant event-based processes, such as bank transactions. 
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It is important to understand that there are several dates involved in the entire job 
application process. The dates are defined in sequential order in Table 6-3 on 
page 236. Also after each subsequent date, certain facts become available. This 
is also shown graphically in Figure 6-23. 

Figure 6-23   Facts associated with each date milestone in accounts fact table

Table 6-3 on page 236 shows the various dates associated with the accumulating 
fact table and the various facts that are made available on each date.

Note: There are several dates associated with accumulating fact tables. Each 
of these dates may be implemented with a single date table using views. The 
date table, when implemented using views for different dates, is said to have 
been involved in Role-playing. We will discuss Role-playing in more detail in 
6.3.9, “Role-playing dimensions” on page 285. 

Facts Available at Various Dates:

[Quantity of Full-time Vacancies for each Job]

[Quantity of Part-time Vacancies for each Job]

[Quantity of Received Applications (Applied for Full-Time Jobs)]
[Quantity of Received Applications (Applied for Part-Time Jobs)]

[Quantity of Applications Acknowledged (Full-Time Jobs)]

[Quantity of Applications Acknowledged (Part-Time Jobs)]

[Quantity of Accepted Applications (Full-Time Jobs)]

[Quantity of Accepted Applications (Part-Time Jobs)]

[Quantity of Rejected Applications (Full-Time Jobs)]

[Quantity of Rejected Applications (Part-Time Jobs)]

[Quantity of Interviews conducted for Full-Time Jobs]
[Quantity of Interviews conducted for Part-Time Jobs]

[Quantity of Interviews cancelled  for Full-Time Jobs]

[Quantity of Interviews cancelled  for Full-Time Jobs]

[Quantity of selected candidates for Full-Time Jobs]
[Quantity of selected candidates for Part-Time Jobs]

[Quantity of rejected candidates for Full-Time Jobs]
[Quantity of rejected candidates for Part-Time Jobs]
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Table 6-3   Activities defined to understand the concept of accumulating facts

Dates Available facts at each corresponding date

Job advertisement 
date

The recruitment company advertises several jobs for several 
companies. 
Important facts available during this date are: 

� Number of full-time vacancies for each job

� Number of part-time vacancies for each job

Applications received 
date

The application applied date is the date at which different 
candidates send the applications for the job vacancies. 
Important facts available during this date are: 

� Number of received applications (for full-time jobs)

� Number of received applications (for part-time jobs)

Applications 
acknowledgement 
date

The application acknowledgement date is the date when each 
candidate who sent a job application is acknowledged (by 
e-mail/phone) that their application has been received and is 
being processed. 
Important facts available during this date are: 

� Number of applications acknowledged (for full-time jobs)

� Number of applications acknowledged (for part-time jobs)

Applications 
validating date

The application validating date is the date on which the 
applications are validated as matching the required 
prerequisite requirements for each job. Any application that 
does not meet prerequisite job requirements is rejected. 
Important facts available during this date are: 

� Number of accepted applications (for full-time jobs)

� Number of accepted applications (for part-time jobs)

� Number of rejected applications (for full-time jobs)

� Number of rejected applications (for part-time jobs)

Interview conducting 
date

The interview date is the date on which candidates are 
interviewed for the job vacancies. 
Important facts available during this date are: 

� Number of interviews conducted for full-time jobs

� Number of interviews conducted for part-time jobs

� Number of cancelled Interviews for full-time jobs

� Number of cancelled interviews for part-time jobs
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Comparison between fact tables
Table 6-4 shows a comparison between the various types of fact tables. 

Table 6-4   Comparison of fact table types

Final results 
announcement date

The final results announcement date is the date on which 
announcement of the selected candidates is made. 
Important facts available during this date are: 

� Number of selected candidates for full-time jobs

� Number of selected candidates for part-time jobs

� Number of rejected candidates for full-time jobs

� Number of rejected candidates for part-time jobs

Feature Transaction 
type fact table

Periodic type fact 
table

Accumulating type fact 
table

Grain 
definition of 
the fact table

One row per 
transaction. For 
example one row 
per line item of a 
grocery bill.

One row per period. 
For example, one 
row per month for a 
single product sold 
in a grocery store.

One row for the entire 
lifetime of an event. For 
example, the lifetime of a 
credit card application 
being sent to the time it is 
accepted.

Dimensions Involves date 
dimension at the 
lowest 
granularity.

Involves date 
dimension at the 
end-of-period 
granularity.This 
could be end of day, 
end-of week, end-of 
month, or end-of 
quarter.

This type of fact table 
involves multiple date 
dimensions to show the 
achievement of different 
milestones.

Dates Available facts at each corresponding date
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Total number 
of 
dimensions 
involved

More than 
periodic fact 
type.

Less than 
transaction fact 
type.

Highest number of 
dimensions when 
compared to other fact 
table types. Generally this 
type of fact table is 
associated with several 
date dimension tables 
which are based on a 
single date dimension 
implemented using a 
concept of role-playing. 
This is discussed in 6.3.9, 
“Role-playing dimensions” 
on page 285. 

Conformed 
Dimensions

Uses shared 
conformed 
dimensions.

Uses shared 
conformed 
dimensions.

Uses shared conformed 
dimensions.

Facts Facts are related 
to transaction 
activities.

Facts are related to 
periodic activities. 
For example, 
inventory amount at 
end of day or week.

Facts are related to 
activities which have a 
definite lifetime. For 
example, the lifetime of a 
college application being 
sent to the time it is 
accepted by the college.

Conformed 
Facts

Uses shared 
conformed facts.

Uses shared 
conformed facts.

Uses shared conformed 
dimensions.

Database 
size

Transaction-
based fact tables 
have the biggest 
size. If the grain 
of the 
transaction is 
chosen at the 
most detailed 
level, these 
tables tend to 
grow very fast.

The size of a 
Periodic fact table is 
smaller than the 
Transaction fact 
table because the 
grain of the date and 
time dimension is 
significantly higher 
than lower level date 
and time dimensions 
present in the 
transaction fact 
table. 

Accumulating fact tables 
are the smallest in size 
when compared to the 
Transaction and Periodic 
fact tables. 

Feature Transaction 
type fact table

Periodic type fact 
table

Accumulating type fact 
table
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6.3  Identifying the model dimensions
In this section, we discuss issues relating to dimensions. We discussed the 
Dimensional Model Design Life Cycle in detail in Chapter 5, “Dimensional Model 
Design Life Cycle” on page 103. Here we focus on the Identify dimensions phase 
of the DMDL, as shown in Figure 6-24 on page 240.

Performance Performance is 
typically good. 
However, the 
performance 
improves if you 
chose a grain 
above the most 
detailed 
because the 
number of rows 
decreases. 

Performance for 
Periodic fact table is 
higher than other 
fact table types 
because data is 
stored at lesser 
detailed grain and 
therefore this table 
has fewer rows.

Performance is typically 
good. The select 
statements often require 
differences between two 
dates to see the time 
period in 
days/weeks/months 
between any two or more 
activities. 

Insert Yes Yes Yes

Update No No Yes. Only when a 
milestone is reached for a 
particular activity.

Delete No No No

Fact table 
growth

Very fast. Slow in comparison 
to transaction- 
based fact table.

Slow in comparison to the 
transaction and periodic 
fact table.

Need for 
aggregate 
tables

High need (This 
is primarily 
because the 
data is stored at 
a very detailed 
level.)

None or very few 
(This is primarily 
because the data is 
already stored at a 
highly aggregated 
level.)

Medium need (This is 
primarily because the data 
is stored mostly at the day 
level. However, the data in 
accumulating fact tables is 
less than the transaction 
level.)

Feature Transaction 
type fact table

Periodic type fact 
table

Accumulating type fact 
table
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Figure 6-24   Dimensional Model Design Life Cycle

6.3.1  Degenerate dimensions
Before we discuss degenerate dimensions in detail, it is important to understand 
the following:

A fact table may consist of the following data:

� Foreign keys to dimension tables

� Facts which may be:

– Additive
– Semi-additive
– Non-additive
– Pseudo facts (such as 1 and 0 in case of attendance tracking)
– Textual fact (rarely the case)
– Derived facts
– year-to-date facts

� Degenerate dimensions (one or more)
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What is a degenerate dimension?
A degenerate dimension sounds a bit strange, but it is a dimension without 
attributes. It is a transaction-based number which resides in the fact table. There 
may be more than one degenerate dimension inside a fact table. 

How to identify a degenerate dimension
All OLTP source systems typically consist of transaction numbers, such as bill 
numbers, courier tracking numbers, order numbers, invoice numbers, application 
received acknowledgements, and ticket numbers. These transaction numbers in 
the OLTP system generally define the transaction.

Consider the grocery store example from Chapter 5, “Dimensional Model Design 
Life Cycle” on page 103. The dimensional design has a transaction number, such 
as the Bill Number# shown in Figure 6-25. This Bill Number# represents several 
line items shown on the graphical bill. Now assume that we choose the grain to 
be an individual line item on a grocery store bill.

A fact table row is a line item on the bill. And a line item is a fact table row. As 
shown in Figure 6-25, we have identified the dimensions that describe each line 
item. The dimensions identified are date, time, product, employee, store, and 
customer. Other dimensions, such as supplier, are not visible on the graphical bill 
but are true to the grain.

Figure 6-25   Grocery store bill 

Quantity UP   DSCDescription Amount

Bill To:
Invoice

Account No.

Date:

Submitted By: Total Due:

Payment must be received by July 23.

Please return a copy of this invoice with your payment.
Thank you.

#PP0403001

1. Eggs                     
2. Dairy Milk             
3. Chocolate Powder
4. Soda Lime            
5. Bread                     

$3
$2
$9
$1.5
$4

$36
$4
$9
$18
$8

$75

Carlos

08/29/2005
1600 Hours

Amit

Customer

Employee

Product

Bill Number#
(Degenerate
Dimension)

Date

Time

Quantity

Unit 
Price

Discount

Total Amt

Grain:
1 Line item 
on the Bill

Store=S1394Store

12
2
1

12
2
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The next question typically is, “what do we do with the Bill Number#?” 
We certainly cannot discard it, because the grain definition we chose is a single 
line item on a bill. 

Should we make a separate dimension for the Bill Number#?

To see whether or not we should make a separate dimension, try to analyze the 
Bill Number# information for the grocery store example. The Bill Number# is a 
transaction number that tells us about our purchase made at the store. If we take 
an old Bill Number# 973276 to the store and ask the manager to find out 
information relating to Bill Number# 973276, we may get all information relating 
to the bill. For example, assume that the manager replies that Bill Number# 
973276 was generated on August 11, 2005. The items purchased were apples, 
orange, and chocolates. The manager also tells us the quantity, unit price, and 
discount for each of the items purchased. He also tells us about the total price. In 
short, the Bill Number # tells us about the following information:

� Transaction date
� Transaction time
� Products purchased
� Store from which bill was generated
� Customer to which the merchandise was sold
� Quantity, unit price, and amount for each purchased product

The important point to note is that we have already extracted all information 
relating to the Bill Number# into other dimensions, such as date, time, store, 
customer, and product. Information relating to quantity, unit price, and amount 
charged is inside the fact table. It would be correct to say that all information that 
the Bill Number# represents is stored in all other dimensions. Therefore, Bill 
Number# dimension has no attributes of its own; and therefore it cannot be made 
a separate dimension.

Should we place the Bill Number# inside the fact table? 

The Bill Number# should be placed inside the fact table right after the 
dimensional foreign keys and right before the numeric facts as shown in 
Figure 6-26 on page 243.
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Figure 6-26   Degenerate dimension

The Bill Number#, in SQL language, serves as a GROUP BY clause for grouping 
together all the products purchased in a single transaction or for a single Bill 
Number#. Although to some, the Bill Number# looks like a dimension key in the 
fact table. But, it is not. This is because all information (such as date of purchase 
and products purchased) relating to the Bill Number# has been allocated to 
different dimensions.

How to identify that a degenerate dimension is missing
The best way to identify a missing or a badly designed degenerate dimension is 
to review your dimensional design and look for any dimension table that has 
equal or nearly the same number of rows as the fact table. In other words, if, for 
every row that you insert in the fact table you also have to pre-insert another row 
in any other dimension table, then you have missed a degenerate dimension. 

Let us review the dimensional model shown in Figure 6-27 on page 244. The 
grain for this dimensional model has been chosen to be an individual line item on 
a grocery store bill. 

Note: A degenerate dimension, such as Bill Number#, is there because we 
chose the grain to be an individual line item on a grocery store bill. In other 
words, the Bill Number# degenerate dimension is there because the grain we 
chose represents a single transaction or transaction line item.

Degenerate
Dimension
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Figure 6-27   Missing degenerate dimension (Bad Design)

In Figure 6-27, we observe that for every purchase a customer makes, an equal 
number of rows are inserted into the dimension and fact tables. This is because 
the Bill dimension table has the Bill_Number which is different for each bill. The 
Bill dimension is not a static dimension like other dimensions.

When will the Bill_Number# no longer be a degenerate dimension?

� When certain data columns belong to the Bill_Number# itself and do not fall 
into any other dimensions (such as Date, Time, Product, Customer, Supplier, 
and Employee), then Bill_Number# would no longer be a degenerate 
dimension. An example of this is explained in a case study in “Identify 
degenerate dimensions” on page 384. We see that Invoice Number (type of 

Note: Dimension tables are static when compared to fact tables, which grow 
constantly in size as sales are made on a daily basis and the activity is 
recorded inside the fact table. In a dimensional design, if the size of a 
dimension table remains equal or nearly equal to that of a fact table, then a 
degenerate dimension has been missed. In other words, if for every fact table 
row to be inserted, correspondingly, an equal or near equal number of rows 
have to be inserted into a dimension table, then there is a design flaw because 
a degenerate dimension has been wrongly represented into a new dimension 
of its own.

IF, Number of Rows in a Dimension table = Number of Rows in Fact Table
Then Degenerate Dimension is missing

Bill_Number#  has been
removed to create a 
separate dimension.
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transaction number) is handled as a separate dimension and not as a 
degenerate dimension inside the fact table.

This decision however needs to carefully be made by studying the Bill_Number#. 
If you decide to create a new separate dimension for the Bill_Number#, then you 
must make sure that it will not contain equal or near equal rows with the fact 
table. If it does, then there has probably been a mistake.

6.3.2  Handling time as a dimension or a fact
A date dimension typically represents day, week, month, quarter, or year, where 
a time dimension represents hours, minutes, and seconds within a day. These 
are two physically separate dimension structures within the data warehouse, 
each with their own surrogate keys used to join the fact tables. Because of the 
unique characteristics of these two dimensions, special considerations can be 
made when building them. It is not advised to merge the date and time dimension 
into one table because a simple date dimension table which has 365 rows (for 1 
year) would explode into 365 (Days) x 24 (Hours) x 60 (Minutes) x 60 (Seconds) 
= 31 536 000 rows if we tried storing hours, minutes, and seconds. This is for just 
1 year. If we had 10 years of data in our date table, we would have 10 x 365 = 
3 650 rows (assuming no leap year). If we now tried to store data at the second, 
minute, and hour level, we would expand the simple date table from 3 650 rows 
(for 10 years) to about 3 650 x 24 x 60 x 60 = 315 360 000 rows.

Having now made a point to handle the date and time dimensions separately, we 
can discuss how to implement the time dimension. 

Time in dimensional modeling 
Unlike the date dimension, the time-of-day (hour, minute, and second) may be 
well expressed as a simple numerical fact rather than as a separate time 
dimension, unless there are textual descriptions of certain periods within the day 
that are meaningful, such as early morning, late morning, noon, lunch hour, 
afternoon, evening, night, and late night shift. 

� Time of day as a dimension: 

Time is expressed as a dimension when the business needs to understand 
the sales of its product over a time period which has meaningful textual 
names such as:

Note: OLTP transaction numbers, such as bill numbers, courier tracking #, 
order number, invoice number, application received acknowledgement, and 
ticket number, usually produce dimensions without any attributes and are 
represented as degenerate dimensions in the fact table.
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– Early morning (6 a.m. to 8 a.m.)
– Late morning hours (8 a.m. to 11 a.m.)
– Rush hour (11 a.m. to 1 p.m.)
– Lunch hour (1 p.m. to 2 p.m.)

For expressing such scenarios that describe the time, we handle time as a 
dimension. This is shown in Figure 6-28. The grain of this time dimension is 
an hour. 

Figure 6-28   Handling time as a dimension

In other words, handling time as a dimension is the correct approach if we 
need to support the roll-up of time periods into more summarized groupings 
for reporting and analysis, such as 30-minute intervals, hours, or a.m./p.m. 
(see Table 6-5 which shows sample time dimension rows) or for 
business-specific time groupings, such as the week day morning rush period, 
week day early mornings, late night shifts, and late evenings.

Table 6-5   Time dimension with sample rows

The other reason you may express time as a dimension is when you want to 
represent different hierarchies for the time that you are measuring. Some of 
the time hierarchies the business may want are listed as follows:

– Standard Time hierarchy (Hour  Minute  Second)

– Military Time hierarchy (Hour  Minute  Second)

Timeid Standard time Time of day description Time of day a.m. 
p.m. indicator

1 0100 hours Late night shift a.m.

2 0800 hours Morning a.m.

3 1100 hours Rush hour a.m.

4 2000 hours Night p.m.
246 Dimensional Modeling: In a Business Intelligence Environment



We have seen in Figure 5-21 on page 157 that date dimension can have 
multiple hierarchies, such as fiscal and calendar hierarchy inside the same 
dimension table. 

� Time of day as a fact

We express time as a fact inside the fact table if there is no need to roll up or 
filter on time-of-day groups, such as morning hour, rush hour, and late night 
shift. Then in this scenario we have the option of treating time as a simple 
numeric fact which is stored in the fact table. Here the time of day is 
expressed as a date-time stamp such as “09-25-2005 10:10:36”. 

Figure 6-29 shows time (TIME_OF_SELLING) expressed as a fact inside the 
fact table. The TIME_OF_SELLING stores the time as a date-time stamp 
which includes the precise time in hours, minutes, and seconds at which the 
product sells inside the store. 

Figure 6-29   Time expressed as a fact

It is important to understand that it is very difficult to generate reports which 
require roll-ups for business-specific time groupings, such as the week day 
morning rush period, week day early mornings, late night shifts, and late 
evenings, using the TIME_OF_SELLING (see Figure 6-29) which is stored as 
fact. 

If we had stored time as a dimension, then we would be able to generate 
reports to support the roll-up of time periods into more summarized groupings 
for reporting and analysis, such as 30-minute intervals, hours, or a.m./p.m. 

Time expressed as a 
FACT (Date-Time Stamp)
[09-25-2005 10:10:36]
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(see Table 6-5 on page 246, which shows sample time dimension rows) or for 
business-specific time groupings, such as the week day morning rush period, 
week day early mornings, late night shifts, and late evenings.

6.3.3  Handling date and time across international time zones
In businesses that span multiple time zones, both the date and time of day may 
need to be expressed both in local time and Greenwich Mean Time (GMT). This 
must be done with separate date dimensions for local and GMT, and separate 
time-of-day facts as well. This is shown in Figure 6-30.

Figure 6-30   Handling International Time Zones

The separate date dimensions are implemented using views, or a concept called 
role-playing. We discuss role-playing in 6.3.9, “Role-playing dimensions” on 
page 285.

6.3.4  Handling dimension hierarchies
A hierarchy is a cascaded series of many-to-one relationships and consists of 
different levels. Each level in an hierarchy corresponds to a dimension attribute. 
Hierarchies document the relationships between levels in a dimension. For 
example, a region hierarchy is defined with the levels Region, State, and City.

Local and GMT 
Time Facts

Local and GMT 
Dates
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In other words, a hierarchy is a specification of levels that represents a 
relationship between different attributes within a hierarchy. Figure 6-31 shows 
sample hierarchies.

Figure 6-31   Dimension hierarchies

Hierarchies enrich the semantics of data in a dimensional model and 
correspondingly improve the class of interesting and meaningful queries that can 
be run against it. 

We now discuss implementing three types of hierarchies:

� Balanced hierarchy
� Unbalanced hierarchy
� Ragged hierarchy

Balanced hierarchy
A balanced hierarchy is one in which all of the dimension branches have the 
same number of levels. In other words, the branches have a consistent depth.

The logical parent of a level is directly above it. A balanced hierarchy can 
represent a date where the meaning and depth of each level, such as Year, 
Quarter, and Month, are consistent. They are consistent because each level 
represents the same type of information, and each level is logically equivalent.

Note: In order to generate data for a report, we can drill down or up on 
attributes from more than one explicit hierarchy and with attributes that are 
part of no hierarchy.

Department

Product Date Location

Category

Brand

Year

Quarter

Month

Country

State

Region

Level 1

Level 2

Level 4

Level 3

Product Name
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Figure 6-32 shows an example of a balanced time hierarchy.

Figure 6-32   Balanced hierarchy

How to implement a balanced hierarchy
A balanced hierarchy consists of a fixed number of levels. Assume that we are 
designing a date dimension consisting of the hierarchy shown in Figure 6-32. We 
design the date dimension as shown Figure 6-33. You should have as many fixed 
attributes inside the dimension table as the number of levels in the hierarchy. This 
is the number of roll-up levels that you want to track.

Figure 6-33   Balanced hierarchy for the Date dimension 

The date dimension can also have multiple balanced hierarchies in the same 
dimension table, as shown in Figure 6-34 on page 251.

Surrogate Key

3 Columns inside date
Dimension for Balanced
Hierarchy
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Figure 6-34   Multiple balanced hierarchies in date dimension

Unbalanced hierarchy
A hierarchy is unbalanced if it has dimension branches containing varying 
numbers of levels. Parent-child dimensions support unbalanced hierarchies.

An unbalanced hierarchy has levels that have a consistent parent-child 
relationship, but have a logically inconsistent level. The hierarchy branches also 
can have inconsistent depths. An unbalanced hierarchy can represent an 
organization chart. For example, Figure 6-35 on page 252 shows a chief 
executive officer (CEO) on the top level of the hierarchy and two people that 
branch off below. Those two are the COO and the executive secretary. The COO 
hierarchy has additional people, but the executive secretary does not. The 
parent-child relationships on both branches of the hierarchy are consistent. 
However, the levels of both branches are not logical equivalents. For example, 
an executive secretary is not the logical equivalent of a chief operating officer. 

We can report by any level of the date hierarchy and see the results across year, 
quarter, or month.

Surrogate Key

Calendar Hierarchy

Fiscal Hierarchy

Multiple Balanced Hierarchies in one Dimension
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Figure 6-35   Unbalanced hierarchy

How to implement an unbalanced hierarchy
It is important to understand that representing an unbalanced hierarchy is an 
inherently difficult task in a relational environment. OLAP Cube-based systems 
are better suited for reporting when the data has unbalanced hierarchies. 
However, if your hierarchies are symmetrical then arguably either type of 
technology (OLAP cubes or relational database) is equally capable of providing 
the answer. 

A common example of an unbalanced hierarchy is an organization chart. 
Employees at a given level may have hundreds of employees, while others at the 
same level may have none or a few. So, as an example, if you wish to create a 
report that computes the sales totals for all employees at a given level, you can 
create this report more efficiently with an OLAP reporting system. For an 
example of an unbalanced hierarchy, see Figure 6-36 on page 253.

Assume, in this hierarchy, that we want to report the sales for a set of managers. 
Each box in the figure represents an employee in the organization, and there are 
are four levels. A large organization with thousands of employee can have many 
levels. It is important to understand that each employee can play the role of a 
parent or a child. The report may require summarizing the sales made by one 
employee or summarizing all sales for one manager (and all people in that 
management chain). This is equivalent to summarizing the sales revenue to any 
node in the organizational tree shown in Figure 6-36 on page 253. 
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Figure 6-36   Unbalanced hierarchies for an organization chart

The general approach for a parent-child relationship in a relational database is to 
introduce a child key in the parent table. This is called a recursive pointer, and is 
shown in Figure 6-37. 

Figure 6-37   Recursive pointer to show parent-child relationship

Issues using a recursive pointer for unbalanced hierarchy
The recursive pointer approach (shown in Figure 6-37) does implement the 
unbalanced hierarchy (shown in Figure 6-36). However, this approach does not 
work well at all with SQL language. Why? 

Assume that we want a report which shows the total sales revenue at node 
Employee 2. What this means is that we want the report showing the total sales 
made by Employee 2, Employee 4, Employee 5, and Employee 7. 

Employee 2

Employee 4 Employee 5

Employee 7

Employee 1

Employee 3

Employee 6

Level 1

Level 2

Level 3

Level 4

Recursive Pointer
(MANAGER_ID)
to show the 
Manager (Parent) 
of each employee 
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We cannot use SQL to answer this question because the GROUP BY function in 
SQL cannot be used to follow the recursive tree structure downward to 
summarize an additive fact such as sales revenue in the SALES_FACT table. 
Because of this, we cannot connect a recursive dimension to any fact table.

The next question is, how do we solve the query using an SQL Group by clause? 
And, how will we be able to summarize the sales revenue at any Employee node 
(from Figure 6-36 on page 253). 

The answer is to use a bridge table between the EMPLOYEE and SALES_FACT 
table as shown in Figure 6-38. The bridge table is called a 
BRIDGE_Traverse_Hierarchy. The aim of the bridge table is to help us traverse 
through the unbalanced hierarchy depicted in Figure 6-36 on page 253. The 
bridge table helps us to analyze the sales revenue (SALES_REVENUE in 
Figure 6-37 on page 253) at any hierarchical level using the SQL language, 
which was not possible with a 
simple recursive pointer as shown in Figure 6-37 on page 253. 

Figure 6-38   Use of a bridge table for descending the unbalanced hierarchy 

What does the bridge table contain?
� The Employee dimension table has one row for each employee entity at any 

level of the hierarchy.

� The bridge table contains a single row for every path as shown in Figure 6-36 
on page 253. In other words, the BRIDGE_Traverse_Hierarchy table contains 

Note: The beauty of using a bridge table to solve the problem of traversing an 
unbalanced hierarchy is that neither the Employee dimension nor the 
Sales_FACT table changes in any way. The use of a bridge table is optional, 
and may be used only when you need to traverse through an unbalanced 
hierarchy as shown in Figure 6-36. 
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one row for each pathway from an employee entity to each immediate 
employee beneath it, as well as a row for the zero-length pathway from an 
employee to itself. 

The BRIDGE_Traverse_Hierarchy table also contains the following other 
information:

– NUMBER_OF_LEVELS column: This is the number of levels between the 
parent and child.

– BOTTOM_FLAG: This flag tells us that the Employee node is the bottom 
most and does not have any employees working under them.

– TOP_FLAG: This flag tells us that the employee is at the top of the 
organizational hierarchy and does not have any employees working above 
them.

Table 6-6 shows sample rows for the unbalanced hierarchy in Figure 6-38 on 
page 254. 

Table 6-6   Sample bridge table rows

Note: A zero-length pathway in an unbalanced hierarchy is a pathway to itself. 
For example, in Figure 6-36, for the Employee 1, the zero-length pathway 
would signify the distance between Employee 1 and itself. 

PARENT_ 
EMPLOYEE
_KEY

CHILD_EMPLOYEE
_KEY

NUMBER_OF
_LEVELS

BOTTOM_
FLAG

TOP_FLAG

1 1 0 No Yes

1 2 1 No No

1 3 1 No No

1 4 2 Yes No

1 5 2 No No

1 6 2 Yes No

1 7 3 Yes No

2 2 0 No No

2 4 1 Yes No

2 5 1 No No

2 7 2 Yes No
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How many rows does the bridge table contain?
To get the answer to this question, we need to analyze the unbalanced hierarchy 
shown in Figure 6-36 on page 253. The total number of rows in the bridge table 
are equal to the total number of paths available inside the unbalanced hierarchy. 
The following are the paths:

1. Employee 1 to Employee 1 (Zero-length pathway to itself)
2. Employee 1 to Employee 2
3. Employee 1 to Employee 3
4. Employee 1 to Employee 4
5. Employee 1 to Employee 5
6. Employee 1 to Employee 6
7. Employee 1 to Employee 7
8. Employee 2 to Employee 2 (Zero-length pathway to itself)
9. Employee 2 to Employee 4
10.Employee 2 to Employee 5
11.Employee 2 to Employee 7
12.Employee 3 to Employee 3 (Zero-length pathway to itself)
13.Employee 3 to Employee 6
14.Employee 4 to Employee 4 (Zero-length pathway to itself)
15.Employee 5 to Employee 5 (Zero-length pathway to itself)
16.Employee 5 to Employee 7
17.Employee 6 to Employee 6 (Zero-length pathway to itself)
18.Employee 7to Employee 7 (Zero-length pathway to itself)

Therefore, the total number of rows in the bridge table named 
(BRIDGE_Traverse_Hierarchy) is 18. This can be verified from Table 6-6 on 
page 255. 

3 3 0 No No

3 6 1 Yes No

4 4 0 Yes No

5 5 0 No No

5 7 1 Yes No

6 6 0 Yes No

7 7 0 Yes No

PARENT_ 
EMPLOYEE
_KEY

CHILD_EMPLOYEE
_KEY

NUMBER_OF
_LEVELS

BOTTOM_
FLAG

TOP_FLAG
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Now suppose that we want to find the total sales revenue during January 2005 
for Employee 2 (Figure 6-36 on page 253) and all its junior employees (Employee 
4, Employee 5, and Employee 7).

In order to descend the hierarchy from Employee 2, we make use of Figure 6-38 
on page 254. Example 6-1 shows sample SQL necessary to generate the report:

Example 6-1   Sample SQL to generate the report for descending the hierarchy

Select E.Full_Name, SUM(F.Sales_Revenue)
From 
Employee E, Bridge_Traverse_Hierarchy B, Sales_Fact F, Date D
where 
E.EmployeeKey= B.Parent_Employee_Key
and
B.Child_Employee_Key= F.EmployeeKey
and
F.DateID= D.DateID
and
E.[FULL NAME]= ‘Employee 2’
// and D.Date= January 2005 Data (Date SQL Code logic depends on Database)
GROUP BY E.Full_Name

Now suppose that we want to find out the total sales revenue during January 
2005 for Employee 6 (Figure 6-36 on page 253) and all its senior employees 
(Employee 3 and Employee 1). In order to ascend the hierarchy for Employee 6, 
we make use of a bridge table, as depicted in Figure 6-39.

Figure 6-39   Use of the bridge table to ascend the unbalanced hierarchy

Example 6-2 shows sample SQL necessary to generate the report.
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Example 6-2   Sample SQL to generate the report for ascending the hierarchy

Select E.Full_Name, SUM(F.Sales_Revenue)
From 
Employee E, Bridge_Traverse_Hierarchy B, Sales_Fact F, Date D
where 
E.EmployeeKey= B.Child_Employee_Key
and
B.Parent_Employee_Key= F.EmployeeKey
and
F.DateID= D.DateID 
and
E.[FULL NAME]= ‘Employee 6’
GROUP BY E.Full_Name

Joining a bridge table 
The bridge table can be joined between the Employee dimension table and fact 
table in two ways. These are shown in Figure 6-40 on page 259. The two ways 
are explained as follows:

� For descending the hierarchy

The fact table joins to the child employee key of the bridge table and the 
employee dimension table joins to the parent employee key of the bridge 
table. Descending means selecting an employee and moving down the 
hierarchy. We can use the NUMBER_OF_LEVELS column to determine how 
deep to go. If the BOTTOM_FLAG=’Yes’, we know that we have reached the 
bottom most part of the unbalanced hierarchy.

� For ascending the hierarchy

The fact table joins to the parent employee key of the bridge table and the 
employee dimension table joins to the child employee key of the bridge table. 
The NUMBER_OF_LEVELS column helps us go up the number of levels 
desired. The TOP_FLAG helps us determine if we have reached the top of the 
hierarchy at the CEO level. 
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Figure 6-40   Ways of joining a bridge table to fact and dimension tables

Summary: Using a bridge table to navigate an unbalanced hierarchy
There are two join directions that you may use:

� Navigate up the hierarchy

– Fact joins to subsidiary customer key

– Dimension joins to parent customer key

� Navigate down the hierarchy

– Fact joins to parent customer key

– Dimension joins to subsidiary customer key

Disadvantages of the bridge table approach
� The bridge table data is complex to maintain.

� The bridge table design is too complex to be used directly by the users.

In what scenarios is the bridge table approach used?
A bridge table is used in scenarios where there is a business need to report 
against an unbalanced organizational hierarchy such as the one discussed in 
Figure 6-36 on page 253 and Figure 6-40 (c). This approach is typically used in 
electronic and manufacturing-related industries dealing with a huge number of 
parts that belong to a higher level assembly. 

Fact Bridge Employee

Employee_id

parent_id Employee_id

Fact Bridge Employee

Employee_id

parent_id

child_id

Employee_id

(a)  Descending the Hierarchy (Moving Down  )

(b)  Ascending the Hierarchy (Moving Up  ) 

Employee 2

Employee 4 Employee 5

Employee 7

Employee 1

Employee 3

Employee 6

child_id

(c)  Organization Hierarchy
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Ragged hierarchy
A ragged dimension contains at least one member whose parent belongs to a 
hierarchy that is more than one level above the child (see Figure 6-41). Ragged 
dimensions, therefore, contain branches with varying depths.

A ragged hierarchy is one in which each level has a consistent meaning, but the 
branches have inconsistent depths because at least one member attribute in a 
branch level is unpopulated. 

A ragged hierarchy can represent a geographic hierarchy in which the meaning 
of each level, such as city or country, is used consistently, but the depth of the 
hierarchy varies. Figure 6-41 shows a geographic hierarchy that has Continent, 
Country, Province/State, and City levels defined. One branch has North America 
as the Continent, United States as the Country, California as the Province or 
State, and San Francisco as the City. 

However, the hierarchy becomes ragged when one member does not have an 
entry at all of the levels. For example, another branch has Europe as the 
Continent, Greece as the Country, and Athens as the City, but has no entry for 
the Province or State level because this level is not applicable in this example. In 
this example, the Greece and United States branches descend to different 
depths, creating a ragged hierarchy.

Figure 6-41   Ragged hierarchy

No
State
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How to implement a ragged hierarchy in dimensions
A ragged hierarchy as shown in Figure 6-41 on page 260 can be implemented in 
a dimension table as shown in Figure 6-42. 

Figure 6-42   Ragged hierarchy implementation in a dimension table

The hierarchy is shown as Continent  Country  State  City. It is possible 
that attributes such as State will not be populated for Countries, such as Greece, 
that have no states. In this scenario, we can populate a dummy value of “Not 
Applicable” or “No States”, rather than null.

6.3.5  Slowly changing dimensions
Handling changes to dimensional data across time can be difficult, and 
dimensional attributes rarely remain static. A customer address can change, 
sales representatives come and go, and companies introduce new products to 
replace older ones.

Changing data in dimension tables can present far-ranging implications when 
you view the changes over time. For example, assume a company sells 
car-related accessories.The company decides to reassign a sales territory to a 
new sales representative. How can you record the change without making it 
appear that the new sales representative has always held that territory? If a 
customer name or married status changes, how can you record the change and 
preserve the old and new version of the name and married status? Designing a 
dimensional model that accurately and efficiently handles changes is a critical 
consideration when building a data warehouse. After all, the main reason for 
building a warehouse is to preserve history.

What are slowly changing dimensions?
A slowly changing dimension is a dimension whose attribute or attributes for a 
record (row) change slowly over time. 

Location 
Hierarchy
 Chapter 6. Modeling considerations 261



In a dimensional model, the dimension table attributes are not fixed. They 
typically change slowly over a period of time, but can also change rapidly. The 
dimensional modeling design team must involve the business users to help them 
determine a change handling strategy to capture the changed dimensional 
attributes. This describes what to do when a dimensional attribute changes in the 
source system. A change handling strategy involves using a surrogate 
(substitute) key as its primary key for the dimension table.

We now present a few examples of slowly changing dimension attribute 
change-handling strategies using the star schema shown in Figure 6-43. We also 
discuss the advantages and disadvantages of each approach.

Figure 6-43   Star schema for discussing slowly changing dimensions

The following are approaches for handling slowly changing dimensions:

Type-1 (overwriting the history)
A Type-1 approach overwrites the existing dimensional attribute with new data, 
and therefore no history is preserved. Now consider the star schema shown in 
Figure 6-43. Assume that the correct first name of a sales representative is 
Monika, but is mistakenly written in the table as Monnica, as shown in Table 6-7.

Table 6-7   Sales_representative table

SALES_REPKEY LASTNAME FIRSTNAME SALESREGION

963276 Agarwal Monnica New York
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When we use a Type-1 approach, we overwrite the old (incorrect) value 
(Monnica) shown in Table 6-7 on page 262, with the new correct value of Monika, 
as shown in Table 6-8.

Table 6-8   Sales_representative table (corrected data)

Updating the FIRSTNAME field once and seeing the change across all fact rows 
is effective and makes good business sense if the update corrects a misspelling, 
such as the first name, for example. But suppose the sales representative now 
correctly named Monika is moved to a new sales region in California. Updating 
the sales representative dimensional row would update all previous facts so that 
the sales representative would appear to have always worked in the new sales 
region, which certainly was not the case. If you want to preserve an accurate 
history of who was managing which sales region, a Type-1 change might work 
for the Sales FIRSTNAME field correction, but not for the “SALESREGION” field.

The Type-1 approach is summarized in Table 6-9.

Table 6-9   Review of Type-1 approach

SALES_REPKEY LASTNAME FIRSTNAME SALESREGION

963276 Agarwal Monika New York

Note: It is very important to involve the business users when implementing the 
Type-1 approach. Although it is the easiest approach to implement, it may not 
be appropriate for all slowly changing dimensions since it can disable their 
tracking business history in certain situations.

Type-1 approach Description

When to use the Type-1 
change handling approach

� This may be the best approach to use if the 
attribute change is simple, such as a correction in 
spelling. And, if the old value was wrong, it may 
not be critical that history is not maintained.

� It is also appropriate if the business does not 
need to track changes for specific attributes of a 
particular dimension.

Advantages of the Type-1 
change handling approach

� It is the easiest and most simple to implement.

� It is extremely effective in those situations 
requiring the correction of bad data.

� No change is needed to the structure of the 
dimension table.
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Type-2 (preserving the history)
A Type-2 approach adds a new dimension row for the changed attribute, and 
therefore preserves history. This approach accurately partitions history across 
time more efficiently than other change handling approaches. However, because 
the Type-2 approach adds new records for every attribute change, it can 
significantly increase the database's size.

Now consider the star schema shown in Figure 6-43 on page 262. Assume that 
the sales representative named Monika works for a sales region in California, as 
shown in Table 6-10. After having worked for fifteen years in California, the region 
is changed to New Jersey. 

Table 6-10   Sales representative table data

With a Type-2 approach, you do not need to make structural changes to the 
Sales_representative dimension table. But you insert a new row to reflect the 
region change. After implementing the Type-2 approach, two records appear as 
depicted in Table 6-11 on page 265. Each record is related to appropriate facts in 
the fact table shown in Figure 6-43 on page 262, which are related to specific 
points in time in the time dimension and specific dates of the date dimension. 

Disadvantages of the 
Type-1 change handling 
approach

� All history may be lost if this approach is used 
inappropriately. It is typically not possible to trace 
history. 

� All previously made aggregated tables need to be 
rebuilt.

Impact on existing 
dimension table structure

� No impact. The table structure does not change.

Impact on preexisting 
aggregations

� Any preexisting aggregations based on the old 
attribute value will need to be rebuilt. For 
example, as shown in Table 6-8, when correcting 
the spelling of the FIRSTNAME of Monika 
(correct name), any preexisting aggregations 
based on the incorrect value Monnica will need to 
be rebuilt.

Impact on database size � No impact on database size.

SALES_REPKEY LASTNAME FIRSTNAME SALESREGION

963276 Agarwal Monika California

Type-1 approach Description
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Table 6-11   Type-2 approach for the sales_representative dimension

This example illustrates two supplementary but important dimensional design 
concepts that are the base of a strong dimensional model. 

First, the primary key for the Sales_Representative dimension table is a 
surrogate key. We highly recommend that you avoid designating a primary key 
that has business value, such as the EMPLOYEE_ID (which is a natural id in the 
source system). Generally when we design an OLTP database, we use a field 
that has meaning as a primary key. However, when designing the primary keys 
for our dimension tables, we want to use non-intelligent keys as primary keys for 
our dimensions. 

This design concept becomes even more important if we are implementing a 
change handling technique using the Type-2 approach. To prove this, assume 
that we use the EMPLOYEE_ID (which is the natural id in the source system) as 
the primary key of the dimension. A Type-2 implementation approach needs to 
accommodate multiple rows per sales representative depending upon the 
number of changes that need to be preserved for history purposes.

In the example, the EMPLOYEE_ID never changes. The person is still the same 
person and has the same employee identification (EMPLOYEE_ID), but his or 
her information changes over time. Attempting to use the EMPLOYEE_ID field 
would cause a primary key integrity violation when you try to insert the second 
row of data for that same person.

The second dimensional model design concept that this example illustrates is the 
lack of use of effective date attributes (in Sales_Representative dimension) that 
identify exactly when the change in the Sales_Representative dimension 
occurred. 

A word on effective and expiration date attributes
There is no need to include effective date attributes inside the 
Sales_Representative dimension because the Date dimension shown in 
Figure 6-43 on page 262 will effectively partition the data over time when it is 
related to the fact table. Of course, the effectiveness of this partitioning depends 
on the grain of the fact table. In our case the grain tracks data at day level using 
the date dimension and at hour level using the time dimension.

SALES_REPKEY LASTNAME FIRSTNAME SALESREGION

963276 Agarwal Monika California

963277 Agarwal Monika New York
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Effective and expiration date attributes are necessary in the staging area 
because we need to know which surrogate key is valid when loading historical 
fact records. This is often a point of confusion in the design and use of type-2 
slowly changing dimensions.

However, effective and expiration date attributes are very important in the 
staging area of the data warehouse or dimensional model because we need to 
know which surrogate key is valid when loading historical fact rows. In the 
dimension table, we stated that the effective and expiration dates are not 
needed, though you may still use them as helpful extras that are not required for 
the basic partitioning of history. It is important to note that if you add the effective 
and expiration date attributes in the dimension table, then there is no need to 
constrain on the effective and expiration date in the dimension table to get the 
correct answer. You can get the same answer by partitioning history using the 
date or time dimension of your dimensional designs.

A summary of the type-2 change handling strategy is presented in Table 6-12.

Table 6-12   Summary of type-2 approach concepts

Type-2 approach Description

When to use the Type-2 
change handling approach

� When there is need to track an unknown number 
of historical changes to dimensional attributes.

Advantages of the Type-2 
change handling approach

� Enables tracking of all historical information 
accurately and for an infinite number of changes.

Disadvantages of the 
Type-2 change handling 
approach

� Causes the size of the dimension table to grow 
fast. In cases where the number of rows being 
inserted is very high, then storage and 
performance of the dimensional model may be 
affected.

� Complicates the ETL process needed to load the 
dimensional model. ETL-related activities that are 
required in the type-2 approach include 
maintenance of effective and expiration date 
attributes in the staging area.

Impact on existing 
dimension table structure

� No change to dimensional structure needed.

� Additional columns for effective and expiration 
dates are not needed in the dimension table.

Impact on preexisting 
aggregations

� There is no impact on the preaggregated tables. 
The aggregated tables are not required to be 
rebuilt as with the type-1 approach.
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Type-3 (preserving one or more versions of history)
The type-3 approach is typically used only if there is a limited need to preserve 
and accurately describe history. An example is when someone gets married and 
there is a need to retain the original surname of the person.

Consider the last name of the person Suzan Holcomb prior to marriage, as 
shown in Table 6-13. The last name for Suzan is Holcomb.

Table 6-13   Customer table

After Suzan gets married to David Williams, she acquires his last name. For such 
changes where we can predict the number of changes that will happen for a 
particular dimension attribute (such as last name), we use a type-3 change. This 
is shown in Table 6-14.

Table 6-14   Type-3 change for customer table

Impact on database size � Yes, accelerates the dimensional table growth 
because with each change in a dimensional 
attribute, a new row is inserted into the dimension 
table.

Adding effective and 
expiration dates to 
dimension tables

No. This is not necessary in the dimension tables. 

However, effective and expiration attributes are 
needed in the staging area because we need to know 
which surrogate key is valid when we are loading 
historical fact rows. In the dimension table, we stated 
that the effective and expiration dates are not needed 
though you may still use them as helpful extras that 
are not required for the basic partitioning of history. It 
is important to note that in case you add the effective 
and expiration date attributes in the dimension table, 
then there is no need to constrain on the effective and 
expiration date in the dimension table in order to get 
the right answer. You could get the same answer by 
partitioning history using the date or time dimension of 
your dimensional designs.

Customer ID First name Old last name New last name Married?

963276 Suzan Holcomb Holcomb No

Customer ID First name Old last name New last name Married?

963276 Suzan Holcomb Williams Yes

Type-2 approach Description
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In Table 6-14 on page 267, you can preserve one change per attribute. In other 
words, you can preserve the last name of Suzan only if she marries once. If she 
marries again, to a second person called Brent Donald, then the type-3 change 
discards her first last name Holcomb, as shown Table 6-15. 

Table 6-15   Type-3 change

Table 6-15 shows that now the new last name is Donald and the old last name 
column has a value of Williams. The disadvantage with the type-3 approach is 
that it can preserve only one change per attribute—old and new or first and last. 
In case you want to preserve two changed attributes for Suzan, then you need to 
redesign the dimension table as shown in Table 6-16.

Table 6-16   Type-3 two changes

The more historical changes you want to maintain using the type-3 change, the 
higher the number of additional columns needed in the dimensional table.

Instead of inserting a new dimensional row to hold the attribute change, the 
type-3 approach places a value for the change in the original dimensional record. 
You can create multiple fields to hold distinct values for separate points in time. 

There is another disadvantage of using the type-3 approach. This has to do with 
extracting information from a dimension table which has been implemented using 
a type-3. Although the dimension structure that was implemented using type-3 
has all the data needed, the SQL required to extract the information can be 
complex.

Extracting a specific value is not that difficult, but if you want to obtain a value for 
a specific point in time, or multiple attributes with separate old and new values, 
the SQL statements needed become long and have multiple conditions. Overall, 
a type-3 approach can store the data of a change, but cannot accommodate 
multiple changes. Also, summary reporting is very difficult using the type-3 
approach.

Customer ID First name Old last name New last name Married?

963276 Suzan Williams Donald Yes

Customer ID First name First old 
last name

Second old 
last name

New last 
name

Married

963276 Suzan Holcomb. Williams Donald Yes

Important: The type-3 approach enables us to see new and historical fact 
table rows by either the new or prior attribute values.
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To summarize the type-3 slowly change handling strategy, we present 
Table 6-17.

Table 6-17   Summary of type-3 approach concepts

6.3.6  Handling fast changing dimensions
In this section we identify the changing dimensions that cannot be handled using 
the Type-1, Type-2, or Type-3 approaches.

Type-3 approach Description

When to use the type-3 
change handling 
approach?

� Should only be used when it is necessary for the 
data warehouse to track historical changes, and 
when such changes will only occur for a finite 
number of times. If the number of changes can be 
predicted, then the dimension table can be 
modified to place additional columns to track the 
changes.

Advantages of the type-3 
change handling approach

� Does not increase the size of the table as 
compared to the type-2 approach, since new 
information is updated. 

� Allows us to keep part of history. This is 
equivalent to the number of changes we can 
predict. Such prediction helps us modify the 
dimension table to accommodate new columns.

Disadvantages of the 
type-3 change handling 
approach

� Does not maintain all history when an attribute is 
changed more often than the number in the 
predicted range, because the dimension table is 
designed to accommodate a finite number of 
changes.

� If we designed a dimension table assuming a 
fixed number of changes, then needed more, 
then we would have to redesign or risk losing 
history.

Impact on existing 
dimension table structure

� The dimension table is modified to add columns.

� The number of columns added depends on the 
number of changes to be tracked.

Impact on preexisting 
aggregations

� You may be required to rebuild the 
preaggregated tables.

Impact on database size � No impact is there since data is only updated.
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What are fast changing dimensions?
A dimension is considered to be a fast changing dimension if one or more of its 
attributes changes frequently and in many rows. A fast changing dimension can 
grow very large if we use the Type-2 approach to track numerous changes. Fast 
changing dimensions are also called rapidly changing dimensions. Consider a 
scenario for a customer dimension having 100 000 rows. Assume that we are 
handling the changes for this customer using the Type-2 approach. Further 
assume that in a year an average of 10 changes occur for each customer. 
Therefore in one year the number of rows will increase to 100 000 x 10 = 1 000 
000. For some companies, this may still be a small number to manage even 
using a Type-2 change. That is, for some, the customer dimension may be a 
slowly changing dimension.

Assume that a customer table has 10 million rows. Imagine the same scenario 
where, on average, 10 changes occur for a customer each year. This means at 
the end of the year, the table would grow to about 100 million rows. This is a huge 
growth. Such a customer dimension may be considered a fast growing 
dimension. Then, handling such a fast growing dimension using a Type-2 
approach is not feasible.

In order to identify the reason for a fast changing dimension, we must look for 
attributes that have continuously variable values such as age, test score, size, 
weight, credit history, customer account status, or income. 

An appropriate approach for handling very fast changing dimensions is to break 
off the fast changing attributes into one or more separate dimensions, called 
mini-dimensions. The fact table would then have two foreign keys—one for the 
primary dimension table and another for the fast changing attributes. These 
dimension tables would be associated with one another every time we insert a 
row in the fact table. 

Figure 6-44 on page 271 shows an example of a fast changing dimension.
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Figure 6-44   Fast changing dimension

The attributes which change rapidly in this fast changing dimension are identified 
as:

� Age
� Income
� Test score
� Rating
� Credit history score
� Customer account status
� Weight

Solving the fast changing dimensions problem

After having identified the constantly changing attributes, the next step is to 
convert these identified attributes individually into band ranges. The concept 
behind this exercise is to force these attributes to take limited discreet values. 
For example, let us assume that each of the above seven attributes takes on 10 
different values, then the Customer_Mini_dimension (Figure 6-45 on page 273) 
will have 1 million values. Thus, by creating a mini-dimension table consisting of 
band-range values, we have solved the problem of the situation where the 
attributes such as age, income, test score, credit history score, customer account 
status, and weight can no longer change. These attributes cannot change 
because they have a fixed set of band-range values (see Table 6-18 on 
page 272) rather than having a large number of values. 

Sample rows for this new Mini-dimension, called Customer_Mini_Dimension, are 
shown in Table 6-18 on page 272. 

Fast Changing 
Attributes in a Fast 
Changing Dimension
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Table 6-18   Sample mini-dimension rows

What is a mini-dimension?

A mini-dimension is a dimension that usually contains fast changing attributes of 
a larger dimension table. This is to improve accessibility to data in the fact table. 
Rows in mini-dimensions are fewer than rows in large dimension tables because 
we try to restrict the rows in mini-dimensions by using the band range value 
concept.

After identifying the fast changing attributes of the primary customer dimension, 
and determining the band ranges for these attributes, a new mini-dimension is 
formed called Customer_Mini_Dimension as shown in Figure 6-45 on page 273. 
This scenario works reasonably well for a few rapidly changing attributes. The 
next question is, “What if there are ten or more rapidly changing attributes?” 

Should there be a single mini-dimension for all fast changing attributes? Maybe, 
but the growth of this mini-dimension can easily get out of hand and grow into a 
huge dimension. The best approach is to use two or more mini-dimensions and 
force the attributes of each of these dimensions to take on a set of band range 
values. 

Age Income Test 
Score

Rating Credit_
History_
Score

Customer_
Account_
Status

Weight

18 to 25 $800 to 
$1000

2-4 8-12 7-9 Good 88

26 to 28 $1000 to 
$1500

5-9 8-12 10-14 Good 88

29 to 35 $1500 to 
$3000

10-17 8-12 15-19 Good 88

More .... .... .... .... .... ....

Note: It is important to understand that the mini-dimension created in 
Figure 6-45 cannot be allowed to grow too large. If it became a fast changing 
dimension, then it must be split into another mini-dimension, and the same 
band range technique applied to accommodate the growth.
272 Dimensional Modeling: In a Business Intelligence Environment



Figure 6-45   Fast changing dimension implementation 

As a summary, the approach used with fast changing dimensions involves the 
following activities:

� We analyze all dimensions identified carefully to find which change very fast.

� The fast changing dimension is analyzed further to see what the impact is on 
the size of the dimension table if we handle the change using the Type-2 
approach. If the impact on the size of the dimension table is huge, then we 
must avoid the Type-2 approach.

� The next step is to analyze the fast changing dimension in detail to identify 
which attributes of this dimension are subject to changing fast. Such fast 
changing attributes are then separated into one or more mini-dimension 
tables whose primary keys are attached to the fact table as a foreign key. 
Then there are the following tables:

– One main dimension table, which was the primary original fast changing 
dimension, without the fast changing attributes.

– One or more mini-dimensions where each table consists of fast changing 
attributes. Each of these mini-dimensions has its own primary surrogate 
keys.

� Now we study each new mini-dimension and categorize the fast changing 
attributes into ranges. For example, age can be categorized into a range, 
such as [1-8], [9-15], [16-25], [26-34], [35-60], and [61 and older]. Although 
the Type-2 approach should not be needed to track age, age bands are often 
used for other purposes such as analytical grouping. Assuming that we have 
the customer date of birth, we can easily calculate age whenever needed. 

Fast Changing 
Attributes Split 
Into a new 
Mini-Dimension
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However, for the purpose of designing a fast changing dimension, we cannot 
in a vacuum determine the band ranges. Only the business needs should be 
the deciding factor in determining which continuously variable attributes are 
suitable for converting to bands. 

Snowflaking does not solve the fast changing dimension problem
We now discuss snowflaking and fast changing dimensions. As an example, 
Figure 6-46 depicts a split Customer dimension and created a Customer 
mini-dimension. The mini-dimension is snowflaked and attached as a foreign key 
to the Customer dimension. However, this is not a good design. Why?

Figure 6-46   Snowflaking a fast changing dimension 

Consider the sample rows shown in Table 6-19, for the 
Customer_Mini_Dimension. Assume that a Customer named Stanislav Vohnik in 
the Customer table is attached to the 1st row in the Customer_Mini_Dimension 
table as shown in Table 6-19. At this point, Customer Stanislav Vohnik, is only 
attached to one row. 

Now assume that in a single year, customer Stanislav has changes to his profile 
at least five times, so that he is now attached to all five rows in Table 6-19. That 
means the average growth for customer Stanislav Vohnik is about five rows every 
year. Imagine, if we have 10 million customers and each has an average of about 
five profile changes, the growth will be about 50 million.

Table 6-19   Sample mini-dimension rows

Age Income Test 
Score

Rating Credit_
History_
Score

Customer_
Account_
Status

Weight

18 to 25 $800 to 
$1000

2-4 8-12 7-9 Good 88

Mini-Dimension Snowflaked
Bad design for handling 

Fast Changing DimensionX
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We have now introduced the fast changing dimension problem in the Customer 
dimension table despite creating a mini-dimension with band range values 
because we snowflaked that dimension.

Had we attached the primary key of the Customer_Mini_Dimension table to the 
Retail_Sales fact table, as shown in Figure 6-47 on page 276, we could have 
solved the problem of the fast changing dimension for the Customer table. In this 
scenario, the changes for the fact table record would be handled by the fact table 
and the corresponding record of change in the Customer_Mini_Dimension. 
There would be still only one record for Customer Stanislav Vohnik in the 
Customer table. The appropriate changes would be handled in the fact table by 
linking the correct profile of Customer Stanislav Vohnik at the time of purchase of 
the product. The appropriate profile would be linked to the 
Customer_Mini_Dimension.

18 to 25 $1000 to 
$1500

5-9 8-12 10-14 Good 88

18 to 25 $1500 to 
$3000

10-17 8-12 15-19 Good 88

18 to 25 $1000 to 
$1500

5-9 8-12 16-17 Good 88

18 to 25 $1000 to 
$1500

5-9 8-12 21-25 Very Good 88

Age Income Test 
Score

Rating Credit_
History_
Score

Customer_
Account_
Status

Weight
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Figure 6-47   Correct approach for handling fast changing dimension

Snowflaking versus mini-dimensions

Figure 6-48 on page 277 shows the difference between snowflaking and creating 
a mini-dimension out of a fast changing customer dimension table. Fast changing 
dimensions should be segmented into one or more mini-dimensions and not 
snowflaked. Snowflaking is appropriate only in cases where low-cardinality 
attributes in the dimension have been removed to separate normalized tables, 
and these normalized tables are then joined back into the original dimension 
table.

Correct Design for handling 
Fast Changing Dimension
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Figure 6-48   Snowflaking versus mini-dimension

How many mini-dimensions for a fast changing dimension?
Assume that we have 10 fast changing attributes for a fast changing dimension. 
Should there be a separate dimension for each attribute? Perhaps, but the 
number of dimensions can rapidly get out of control and the fact table will have a 
large number of foreign keys for these dimensions. 

One approach is to combine several of these mini-dimensions into a single 
physical mini-dimension. This is the same technique used to create a garbage 
dimension (see6.3.8, “Identifying garbage dimensions” on page 282) that 
contains unrelated attributes and flags to get them out of the fact table. It is 
important to understand that the fact table must always be involved to relate 
customers to their attributes (present in mini-dimension). If the mini-dimension 
becomes too large, then split the mini-dimension into two or more 
mini-dimensions.

6.3.7  Identifying dimensions that need to be snowflaked
In this section we look at snowflaking to see when it is practical to implement in 
dimensional designs. We also look at cases of poor dimensional design where 
hierarchies have been snowflaked into separate dimension tables, and as a 
result performance and understandability of the dimensional model have 
suffered.

Mini-dimension

Fact
Dimension

Table

Mini-dimension
(Fast Changing Attributes)

Snowflaking

Fact Dimension
Table

Snowflake(FK)

(FK)

(PK)

(PK)

(FK) (PK)

(PK)(FK)
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What is snowflaking?
Further normalization and expansion of the dimension tables in a star schema 
result in the implementation of a snowflake design. In other words, a dimension 
table is said to be snowflaked when the low-cardinality attributes in the dimension 
have been removed to separate normalized tables and these normalized tables 
are then joined back into the original dimension table.

Typically, we do not recommend snowflaking in the dimensional model 
environment, because it can impact understandability of the dimensional model 
and result in a decrease in performance because more tables will need to be 
joined to satisfy queries.

When do you snowflake?
Snowflaking a dimension table can typically be performed under the following two 
conditions:

� The dimension table consists of two or more sets of attributes which define 
information at different grains.

� The sets of attributes of the same dimension table are being populated by 
different source systems.

To help understand when and why we snowflake, consider the sample customer 
table shown in Figure 6-49.

Figure 6-49   Customer dimension

Customer 
Attributes

Customer 
Country

Attributes
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The customer table shows two kinds of attributes. These are attributes relating to 
the customer and attributes relating to the customer country. Both set of 
attributes represent a different grain (level of detail) and also both sets of 
attributes are populated by a different source system. 

Such a customer dimension table is a perfect candidate for snowflaking for two 
primary reasons:

� The customer table represents two different sets of attributes. One set shows 
customer attributes and the other set shows customer’s country attributes. 
Both of these sets of attributes represent a different level of detail of 
granularity. One set describes the customer and the other defines more about 
the country. Also, the data for all customers residing in a country is identical.

� On detailed analysis, we observe that the customer attributes are populated 
by the company CRM source system, where the country-related attributes are 
populated from an external demographic firm that has expertise in country 
demographic attributes. It may also be possible another source system in the 
company may also be supplying some of these attributes.

The snowflaked customer table is shown in Figure 6-50. The customer 
dimension table is said to be snowflaked when the low-cardinality attributes 
(customer’s country attributes) in the dimension have been removed to separate 
a normalized table called country and this normalized table is then joined back 
into the original customer dimension table.

Figure 6-50   Snowflaked customer table

When NOT to snowflake?

Typically, we recommend that you avoid the use of snowflaking, or normalization 
of dimension tables, unless required and appropriate, as depicted in Figure 6-50. 
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Dimensional modelers may argue that snowflaking reduces disk space 
consumed by dimension tables, but the savings are usually insignificant when 
compared with the entire data warehouse. Moreover the disadvantages in ease 
of use or query performance far outweigh the space savings achieved by 
inappropriate snowflakes.

Figure 6-51 shows an inappropriate use of snowflakes where hierarchies that 
belong to a single product dimension table have been split into separate tables. 
This has an adverse affect on query performance and understandability.

Figure 6-51   Inappropriate use of snowflaking

Snowflaking for performance improvement
A snowflake schema is a variation on the star schema, in which very large 
dimension tables are normalized into multiple tables. We do not recommend 
segmenting hierarchies into snowflake tables, because users typically use 
different level members of the hierarchy in viewing reports. If hierarchies are split 
into separate tables, performance may be impacted as a larger number of joins 
will be required.

In some situations, you may snowflake the hierarchies of a main table. For 
example, dimensions with hierarchies can be decomposed into a snowflake 
structure to avoid joins to big dimension tables when you are using an aggregate 
of the fact table. As an example, if you have brand information that you want to 
separate from a product dimension table, you can create a brand snowflake that 
consists of a single row for each brand and that contains significantly fewer rows 
than the product dimension table.

Note: Do not snowflake hierarchies of one dimension table into separate 
tables. Hierarchies should belong to the dimension table only and should 
never be snowflaked. Multiple hierarchies can belong to the same dimension if 
the dimension has been designed at the lowest possible detail. 
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Figure 6-52 shows a snowflake structure for the brand and product line elements 
and the brand_agg aggregate table.

Figure 6-52   Snowflaking to improve performance

By creating an aggregate table that consists of the brand code and the total 
revenue per brand, a snowflake schema can be used to avoid joining to the much 
larger sales table. This is shown in the example query on the brand and 
brand_agg tables, depicted in Example 6-3.

Example 6-3   Query directly on brand table to improve performance

SELECT brand.brand_name, brand_agg.total_revenue
FROM brand, brand_agg
   WHERE brand.brand_code = brand_agg.brand_code 
   AND brand.brand_name = 'Anza'

Without a snowflaked dimension table, a SELECT UNIQUE or SELECT 
DISTINCT statement on the entire product table (potentially, a very large 
dimension table that includes all the brand and product-line attributes) would 
have to be used to eliminate duplicate rows.

While snowflake schemas are unnecessary when the dimension tables are 
relatively small, a retail or mail-order business that has customer or product 
dimension tables that contain millions of rows can use snowflake schemas to 
significantly improve performance.

Brand_Agg Aggregate Table (Snowflaked 
Brand Table uses this Aggregate Table and 
not the Sales Fact Table)
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If an aggregate table is not available, any joins to a dimension element that was 
normalized with a snowflake schema must now be a three-way join, as shown in 
Example 6-4. A three-way join reduces some of the performance advantages of a 
dimensional database.

Example 6-4   Three-way join reduces performance

SELECT brand.brand_name, SUM(sales.revenue)
FROM product, brand, sales
   WHERE product.brand_code = brand.brand_code 
   AND brand.brand_name = 'Alltemp'
GROUP BY brand_name

Disadvantages of snowflaking 
The greater the number of tables in a snowflake schema, the more complex the 
design.

� More tables means more joins, and more joins mean slower queries.

� It is best not to use snowflaking to try to save space. Space saved by 
snowflaking is extremely small compared to the overall space of the fact table 
in the dimensional design. 

6.3.8  Identifying garbage dimensions
A garbage dimension is a dimension that consists of low-cardinality columns 
such as codes, indicators, and status flags. The garbage dimension is also 
referred to as a junk dimension. The attributes in a garbage dimension are not 
related to any hierarchy.

We now review the dimensional model (see Figure 6-53 on page 283) for the 
grocery store example described in Chapter 5, “Dimensional Model Design Life 
Cycle” on page 103. The grain for this dimensional model is a single line item on 
the grocery bill or invoice. 

To understand the concept of a garbage dimension, assume that we need to add 
three additional things to this dimensional model. They are:

� Customer feedback about the store, and customer feedback by employee, 
categorized as good, bad, and none.

� Method used by the customer to pay for the products, categorized as cash or 
credit card.

� Bag selected to carry the goods, categorized as plastic, paper, or both.
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Figure 6-53   Grocery store example

The next question is, how do we accommodate these new attributes in the 
existing dimensional design. The following are the options:

� Put the new attributes relating to customer feedback, payment type, and bag 
type into existing dimension tables.

� Put the new attributes relating to customer feedback, payment type, and bag 
type into the fact table.

� Create new separate dimension tables for customer feedback, payment type, 
and bag type.

First, we cannot put the new attributes into existing dimension tables because 
each of the new attributes has a different grain than the product, supplier, 
employee, time, customer, store, or date table. If we tried to forcibly add these 
new attributes, we would create a cartesian product for the dimension tables. For 
example, we merge the payment type (Credit card or Cash) attribute with the 
product table. Assume that we have 100 product rows in the product table. After 
adding the payment type attribute to the product table, we have 200 product 
rows. This is because one product would need to be represented with two rows, 
for both credit card and cash payment type. Because of this reason, we do not 
force adjusting these attributes inside any of the existing dimension tables.

Second, we take the fact table. We do not recommend adding low-cardinality 
fields into the fact table because it would result in a very huge fact table.

Our third choice was to create a separate dimension for each of new attributes 
relating to customer feedback, payment type, and baggage type. The 
disadvantage of this approach is that we will have three additional foreign keys 

Note: Fact tables generally occupy 85-95% of the space in most dimensional 
designs. To optimize space, recall that fact tables should only contain facts, 
degenerate dimension numbers, and foreign keys. Fact tables should not be 
used to store textual facts or low-cardinality text fields. 
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inside the fact table. Having the three foreign keys in the table is equivalent of 
increasing the row size in the fact table by 4 x 3 = 12 bytes. A fact table that has, 
for example, 100,000 rows inserted into it on a daily basis, would increase about 
12 times with an increase of 12 bytes per row. This increased size would impact 
the performance of the fact table. 

The best way to solve the problem associated with low-cardinality attributes, 
such as those relating to customer feedback, payment type, and baggage type, 
is to create a single dimension called a garbage dimension. An example is 
depicted 
in Figure 6-54. A garbage dimension acts as a storage space for the 
low-cardinality fields. 

Figure 6-54   Garbage dimension implementation 

Table 6-20 on page 285 shows sample rows inside the Garbage_Dimension 
table. The total number of rows inside a garbage dimension is equal to the 
number of rows formed after taking the cartesian product of all individual values 
that reside inside each of the low-cardinality attributes. Therefore, the number of 
rows inside the Garbage_Dimension table is 3 x 3 x 2 x 3 = 54 rows. A new 
surrogate key value is also generated for each combination. The following are 
the possible values for each of the low-cardinality fields:

� Customer feedback: Good, bad, and none
� Customer feedback about employee: Good, bad, and none
� Payment type: Cash or credit card
� Bag type to carry goods: Plastic, paper, or both

Note: Avoid creating separate dimensions for low-cardinality fields such as 
those which hold flags and indicators. 

Garbage Dimension 
consisting of the 

Low-cardinality Fields
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Table 6-20   Sample rows inside the garbage dimension

How should you load the garbage dimension?
There are two ways to load the garbage dimension. They are:

� Preload the dimension: In this approach, you identify all the possible 
combinations of values that could result from the cartesian product of all 
individual values that reside inside each of the low-cardinality attributes. Then 
you load the dimension table. This approach works well if the number of rows 
that result from the cartesian product are few.

� Load at run time: This approach works well if the garbage or junk dimension 
has a huge number of rows. However, in this scenario, you might not 
pre-populate all combinations.

6.3.9  Role-playing dimensions
A single dimension which is expressed differently in a fact table using views is 
called a role-playing dimension. 

Figure 6-55 on page 286 shows a dimensional model designed for an order 
management business process. There are two date entities (order and received 
date) at the same day grain involved. 

Garbage_
Dim-Key

Customer_Store
_Feedback

Customer_
Employee_
Feedback

Payment_
Type

Bag_Type

1 Good Good Credit card Plastic

2 Good Bad Credit card Plastic

3 Good None Credit card Plastic

Note: If the garbage or junk dimension grows too large, then you must split it 
into two or more dimensions. The total number of rows inside a garbage 
dimension is equal to the number of rows that are formed after taking the 
cartesian product of all individual values that reside inside each of the 
low-cardinality attributes.
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Figure 6-55   Order management dimensional model

Instead of using two separate date tables, Order_Date and Received_Date with 
the same granularity, we can create two views from a single date table (Date) as 
shown in Figure 6-56 on page 287. 

The Order_Date_View and Received_Date_View serve as the role-playing 
dimensions as depicted in Figure 6-56 on page 287. 

2 Date Tables
being used at
the same day

level granularity
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Figure 6-56   Role-playing dimension

The Order_Date_View and Received_Date_View dimension tables are 
implemented as views, as shown in Example 6-5 and Example 6-6.

Example 6-5   Order_Date_View dimension table implementation 

Create View ORDER_DATE_VIEW(ORDER_DateId,Order_Date, Order_Date_Description, 
Order_Day_of_Week, Order_Calendar_Month, Order_Calendar_Quarter, 
Order_Calendar_Year, Order_Fiscal_Week, Order_Fiscal_Month, 
Order_Fiscal_Quarter, Order_Fiscal_Year, Order_Holiday_Flag, 
Order_Weekday_Flag, Order_Weekend_Flag, Order_Season, Order_National_Event) as 
select * from Date 

There is only one date table, but it is projected differently using views. 

Example 6-6   Received_Date_View dimension table implementation

Create View Received_DATE_VIEW(Received_DateId,Received_Date, 
Received_Date_Description, Received_Day_of_Week, Received_Calendar_Month, 
Received_Calendar_Quarter, Received_Calendar_Year, Received_Fiscal_Week, 
Received_Fiscal_Month, Received_Fiscal_Quarter, Received_Fiscal_Year, 
Received_Holiday_Flag, Received_Weekday_Flag, Received_Weekend_Flag, 
Received_Season, Received_National_Event) as 
select * from Date

Order_Date View 
Based on Date Table

Received_Date View 
Based on Date Table
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6.3.10  Multi-valued dimensions
We discussed in section 5.4.1, “Dimensions” on page 135 that each dimension 
attribute should take on a single value in the context of each measurement inside 
the fact table. However, there are situations where we need to attach a 
multi-valued dimension table to the fact table. There are situations where there 
may be more than one value of a dimension for each measurement. These 
cases are handled using multi-valued dimensions.

Consider the design for a dimensional model for a family insurance company. 
Assume that Mr. John is the family insurance policy account holder and he has 
the policy account number 963276. Mr. John is married to Lisa and they have a 
son named Dave. Mr. John later decides to get a joint family policy under the 
same policy account number 963276. This means is that the three family 
members hold a joint policy for the same account 963276.

Assume that the family insurance company charges a particular amount for the 
entire family, which is insured under a common policy account number 963276.

Now assume we are asked to create a data mart for this insurance company and 
the business users have the following set of requirements:

� Business is interested in analyzing the revenue generated each month after 
the policy account holders pay differing amounts for their family insurance. 

� Business is interested in analyzing the revenue generated for different states 
and counties.

� Business is also interested in analyzing the data to see individual members 
associated with each policy. That is, they want to know how many members, 
and their identity, are associated with a single policy number. For example, 
the business may be interested to know that for policy account number 
963276, Mr. John is the primary policy holder and his wife, Lisa, and their son, 
Dave, are associated with it. 

To create the dimensional model, we decide the grain of the fact table is one 
row for each family policy account at the end of each month. We create a 
dimensional model design as depicted in Figure 6-57 on page 289.
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Figure 6-57   Family insurance dimensional model

The multi-valued dimension
As it is shown in Figure 6-57, an individual family insurance policy account can 
have one, or more, customers associated with it. For example, for the policy 
account number 963276, there are three insured customers.

To represent that there is more than one customer associated with the fact 
(Monthly_Premium_Paid), we cannot merely include the customer as an account 
attribute. By doing so, we would be violating the granularity of the dimension 
table because more than one individual can be associated with a single family 
insurance account number. 

Similarly, we cannot include an additional customer dimension in the fact table 
because we have declared the grain to be one row per family policy account. So, 
if we include the customer dimension we would be violating the grain because 
there would be one policy account associated to more than one customer. This is 
a typical example of a multi-valued dimension. 

We can solve this multi-valued dimension problem with the use of an 
Account-Insured_Person bridge table as shown in Figure 6-58 on page 290. The 
primary key of the Account-Insured_Person bridge table consists of the surrogate 
Account and Insured_Person foreign keys. Therefore, using the bridge table, we 
are able to associate three customers, namely Mr. John, his wife, Lisa, and son, 
Dave, to the same family policy account number without violating the grain 
definition.

Single Account Number
963276 is associated 
with 3 Insured persons 
(John, Lisa and Dave).

Monthly_Premium_Paid (Fact) is 
associated with many values, such 

as John, Lisa, and son Dave.

(Multi-valued Concept)
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Figure 6-58   Use of a bridge table for multi-valued dimension

What is the weighting factor?
A weighting factor is an important column placed inside the bridge table. We 
assign a numerical weighting factor to each insured person for each family policy 
account number such that the sum of all the weighting factors belonging to a 
single group or account number is exactly 1. The weighting factor is simply a way 
to allocate the numeric additive facts across the insured persons that are present 
in the Insured_Person dimension table.

Approaches for handling multi-valued dimensions
There are situations when we need to attach multiple values for a dimension to a 
single fact table row, or when we need to attach a multi-valued dimension table to 
the fact table. We described an example of a multi-valued dimension in 
Figure 6-58. Another example of a multi-valued dimension is where we associate 
many customers to a single bank account. Or, when multiple diagnoses are 
associated with single patient. Dimensional modelers usually take one of 
following approaches for handling multi-valued dimension attributes:

� Choose one particular value and leave the others: This is the most 
frequently used technique, but it should not be forced. If we use this 
approach, the multi-valued dimension problem is eliminated, but the 
dimensional model may still not be useful because of missing dimensions.

� Extend the dimensions list to include a fixed number of multi-valued 
dimensions: This is not a good approach because it may increase the 
number of dimensions for each multi-value. Also, the number of values 
(dimensions) we may need to create are not fixed and may vary from case to 
case. If we create a fixed number of multi-valued dimensions and if the 
number of multi-values increases, then our design will not be flexible enough 
to handle it well. 

Bridge Table
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� Use a bridge table: The bridge table may be inserted in two ways:

a. Between the fact and dimension table, as shown in Figure 6-59, we chose 
the grain as one single line item on each order. We observe that for each 
order completion, there are one or more sales representatives that are 
involved with the sale and work together to get the order. The weighting 
factor column shows the relative contribution of each in getting the order. 
Assume that two persons work to get an order (Order Number# 99). 
Person A is contributes 90% of the overall time, where Person B only 
contributes 10%. There would be one row for the entire order (Order 
Number# 99), but there would be two rows for Person A and Person B in 
the ORDER-to-SALES REP BRIDGE table. The weighting factor for 
Person A is .9, since Person A contributed 90%, and for Person B the 
weighting factor is .1 since Person B’s contribution was 10%. There are 
two rows in the “SALES_REPRESENTATIVE” table. 

Figure 6-59   Multi-valued dimension example

b. The other way was depicted in Figure 6-58 on page 290. Here, the bridge 
table is inserted between the Account dimension table and 
Insured_Person dimension table to show that multiple persons are 
associated with the same account. 

6.3.11  Use of bridge tables
Bridge tables are used to express a many-to-many relationship between a fact 
and a dimension table. In dimensional modeling, the bridge tables are primarily 
used for two reasons:

� To solve the complex unbalanced hierarchies problem as discussed in 
“Unbalanced hierarchy” on page 251.

� For solving the multi-valued dimension problem as discussed in “Multi-valued 
dimensions” on page 288.

Use of Bridge Table to show 
that more than 1 Employee
may be involved in 1 Order

Note: Grain is a single entire Order 
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6.3.12  Heterogeneous products
The term heterogeneous means mixed, assorted, or diverse. This is exactly 
the state of many businesses. That is, they are selling diverse products to a 
common customer base. To better understand the concept, assume that we 
work for an insurance company called ABC 979 Insurance Inc., that sells 
products in the form of insurance policies. In particular, the company sells 
home and car insurance. The concept of heterogeneous products comes to 
light when a company sells different products with different unique attributes 
to the same customer base. 

Moreover, the attributes the business tracks for home insurance are very 
different from those collected for car insurance. This is a typical example of a 
company selling heterogeneous products.

There are several approaches of handling heterogeneous products within the 
company. Several approaches are explained below:

� Merge attributes: Merge all the attributes into a single product table and all 
facts relating to the heterogeneous attributes in one fact table. This approach 
is depicted in Figure 6-60. The disadvantage of this approach is that all 
unrelated attributes for home and car insurance are merged into one single 
dimension. This makes the insurance dimension very large. Also for every 
row inside such a dimension, many columns belonging to home insurance are 
NULL for car insurance, because they belong to a different type. For this 
approach, a single fact table is created in which all facts for all heterogeneous 
products are merged, so the fact table grows very large. 

You should avoid this approach because the huge size of the tables can result 
in performance issues.

Figure 6-60   Merge all heterogeneous product attributes into one table

� Separate tables: Create separate dimension and fact tables for different 
heterogeneous products, as depicted in Figure 6-61 on page 293. With this 
approach, we create separate dimensions and facts for the heterogeneous 
products. 
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Figure 6-61   Separate dimension and fact tables to handle heterogeneous products

The advantage of having separate dimension and fact tables for such 
heterogeneous products is that the specifics about these individual 
businesses (Home and Car Insurance) can be analyzed in more detail.

� Generic design: Create a generic design to include a single fact and single 
product dimension table with common attributes from two or more 
heterogeneous products, as depicted in Figure 6-62. In this approach, we 
identify common attributes between heterogeneous dimensions and model 
them as a single dimension. Also, we identify and create generic facts, such 
as Transaction Amount or Revenue, earned for the two heterogeneous 
dimensions. This way the business can analyze the two business processes 
together for common facts. 

Figure 6-62   Generic design to handle heterogeneous products

(Home Insurance)

(Car Insurance)

Generic Fact (Transaction Amount) 
for the Heterogeneous ProductsCommon Attributes

For Heterogeneous 
Insurances, such as 

Car and Home
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The disadvantage of this approach is that only common attributes between 
the heterogeneous types of insurance (Home and Car) are available for 
analysis. Also, there is only a generic fact called the Transaction Amount. 
However, for detailed, specific business facts and attributes about each type 
of insurance (Car and Home), management can refer to the separate 
dimensional models as shown in Figure 6-61 on page 293. 

6.3.13  Hot swappable dimensions or profile tables 
A dimension that has multiple alternate versions of itself that can be swapped 
at query time is called a hot swappable dimension or profile table. Each of 
the versions of the hot swappable dimension can be of different structures. 
The alternate versions of the hot swappable dimensions access the same fact 
table, but with different output. The different versions of the primary dimension 
may be completely different, including incompatible attribute names and 
different hierarchies. 

Unlike in a relational database, building hot swappable dimensions in OLAP is 
complicated because the joins between the tables cannot be specified at the 
query time.

How to implement a swappable dimension
� Create separate physical dimensions from the primary dimension, which has 

only a subset of data (columns and rows) of interest. The new dimension can 
then be swapped instead of using the primary dimension at run time by 
joining the key of the swappable dimension to the foreign key inside the fact 
table. The fact table remains the same for the primary dimension and all 
swappable dimensions. 

� Create one or more views based on the primary dimension. These views can 
be swapped at run time to join to the fact table instead of the primary 
dimension table. 

Figure 6-63 on page 295 shows a dimensional model for an order 
management system, with dimensions such as Product, Customer, Supplier, 
and Sales_Channel for which we have created swappable dimensions. 

Note: The concept of heterogeneous products applies to situations where the 
customer base is common. That is, if the company is selling heterogeneous 
products to altogether different customers, then such products would typically 
belong to separate data marts and perhaps also separate data warehouses.

Note: Swappable dimensions may be implemented to improve performance of 
the dimensional model. The swappable dimensions also help create more 
secure dimensions. 
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Figure 6-63   Hot swappable dimensions

As shown in Figure 6-63, all business users still use the same fact table 
“Sales_Fact” which is still stored in a single place. However, each business user 
may swap the different versions of dimensions at query time. 

The description of each primary dimension and its corresponding swappable 
dimension is explained in Table 6-21 on page 296.

Note: An important concept behind using swappable dimensions is that each 
of the swappable dimensions can be used in place of the primary dimension to 
join to the same fact table. The swappable dimensions have less data when 
compared to the primary dimension and so this way fewer rows (of swapping 
dimension) join to the huge fact table, and therefore performance is faster. 
Also, using swappable dimensions, you can secure data by allowing the user 
to access only the swapped dimension which contains restricted data. This 
way the user views only the swapped dimension and not the entire primary 
dimension. 

Goods

Services

Yearly Subscriptions

Monthly Subscriptions

Internet

Catalog

Local Store

Warehouse

Business Partner

Supplier_S1

Supplier_S2

Supplier_S3

Supplier_S4

Hot Swappable Dimensions

Hot Swappable Dimensions

Facts

Sales_Channel

Employees

Date

Supplier

Customer

Product

Direct Consumer

Business Consumer
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Table 6-21   Primary dimension and corresponding swappable dimensions

Primary 
dimension

Swappable 
dimension

Description for swappable dimension 

Product Goods The Goods swappable dimension is derived 
from product dimension, and consists of all 
products which are goods. 

Services The Services swappable dimension is derived 
from product dimension, which consists of all 
products which are offered as services. 

Yearly 
Subscription

The Yearly Subscription swappable dimension 
is derived from product dimension and consists 
of all products which are subscribed to yearly. 

Monthly 
Subscription

The Monthly Subscription swappable dimension 
is derived from product dimension and consists 
of all products which are subscribed to monthly. 

Date None None

Sales_Channel Internet The Internet swappable dimension is derived 
from Sales_Channel dimension and consists of 
all products that are sold through the Web.

Catalog The Catalog swappable dimension is derived 
from Sales_Channel dimension and consists of 
all products which are sold through the catalog.

Local_Store The Local_Store swappable dimension is 
derived from Sales_Channel dimension and 
consists of all products that are sold through the 
local stores.

Warehouse The Warehouse swappable dimension is 
derived from Sales_Channel dimension and 
consists of all products that are sold through the 
warehouses.

Business_
Partner

The Business_Partner swappable dimension is 
derived from the Sales_Channel dimension and 
consists of all products which are sold through 
the business partners.
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6.4  Facts and fact tables
In this section, we discuss challenges that surface because of the particular 
attributes being used with facts and fact tables. 

6.4.1  Non-additive facts
Non-additive facts are facts which cannot be added meaningfully across any 
dimensions. In other words, non-additive facts are facts where the SUM operator 
cannot be used to produce any meaningful results. Examples of non-additive 
facts include:

� Textual facts: Adding textual facts does not result in any number. However, 
counting textual facts may result in a sensible number.

� Per-unit prices: Adding unit prices does not produce any meaningful 
number. For example, unit sales price or unit cost is strictly non-additive 

Supplier Supplier_S1 
(Goods)

The Supplier_S1 swappable dimension is 
derived from Supplier dimension, and consists 
of all products (goods) which are supplied by the 
supplier “S1”.

Supplier_S2 
(Goods)

The Supplier_S2 swappable dimension is 
derived from Supplier dimension, and consists 
of all products (goods) which are supplied by the 
supplier “S2”.

Supplier_S3 
(Services)

The Supplier_S3 swappable dimension is 
derived from Supplier dimension, and consists 
of all products (services) which are supplied by 
the supplier “S3”.

Supplier_S4 
(Subscriptions)

The Supplier_S4 swappable dimension is 
derived from Supplier dimension, and consists 
of all products (all subscriptions) which are 
supplied by the supplier “S4”.

Customer Direct_
Consumer

The Direct_Consumer swappable dimension is 
derived from Customer dimension, and consists 
of all direct customers.

Business_
Consumer

The Business_Consumer swappable dimension 
is derived from Customer dimension, and 
consists of all business customers.

Primary 
dimension

Swappable 
dimension

Description for swappable dimension 
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because adding these prices across any dimension will not yield a meaningful 
number. If instead we store the unit cost as an extended price (such as 
per-unit cost x quantity purchased), it is correctly additive across all 
dimensions. 

� Percentages and ratios:

A ratio, such as gross margin, is non-additive. Non-additive facts are usually 
the result of ratio or other calculations, such as percentages. Whenever 
possible, you should replace such facts with the underlying calculation facts 
(numerator and denominator) so you can capture the calculation in the 
application as a metric. It is also very important to understand that when 
adding a ratio, it is necessary to take sums of numerator and denominator 
separately and these totals should be divided. 

� Measures of intensity: Measures of intensity such as the room temperature 
are non-additive across all dimensions. Summing the room temperature 
across different times of the day produces a totally non-meaningful number as 
shown in Figure 6-64. However, if we do an average of several temperatures 
during the day, we can produce the average temperature for the day, which is 
a meaningful number. 

Figure 6-64   Non-additive facts

� Averages: Facts based on averages are non-additive. For example, average 
sales price is non-additive. Adding all the average unit prices produces a 
meaningless result as shown in Figure 6-64.

� Degenerate Numbers: Degenerate dimensions are also non-additive. 
Number, such as order number, invoice number, tracking number, 

Note: You may avoid storing non-additive facts, such as unit prices, as facts in 
the fact table. Instead you may store fully additive facts such store quantity 
sold and amount charged (unit price x quantity). Then to get the unit price of 
the product, just divide the amount charged by the quantity. 

$60Total

$30March

$20February

$10January

Avg. Units PriceMonth

195 FTotal

65 FJan 9th (9 AM )

65 FJan 9th (7 AM )

65 FJan 9th (6 AM )

TemperatureDay

(a) Average Units Price (Non-Additive) (b) Temperature (Non-Additive)

X X
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confirmation number, and receipt number, are stored inside the fact table as 
degenerate dimensions. Counts of such numbers produce meaningful results 
such as total number of orders received or total number of line items in each 
distinct order.

6.4.2  Semi-additive facts
Semi-additive facts are facts which can be summarized across some dimensions 
but not others. Examples of semi-additive facts include the following:

� Account balances
� Quantity-on-hand

We now discuss these types of semi-additive facts in more detail and see how to 
handle these in dimensional modeling and in reports.

(a) Account balances 
Account balances are typically semi-additive facts. Consider a customer named 
Chuck whose account balance is shown in Figure 6-65. Chuck has an initial 
deposit of $1000 on January 1, 2005, withdraws $100 on January 2, deposits 
$600 on January 7, withdraws $500 on January 9, withdraws $300 on January 
15, and finally deposits $1000 on January 31. His account balance at the end of 
January 2005 is $1700. 

Figure 6-65   Account balances are semi-additive

Note: Non-additive facts, such as degenerate dimensions, may be counted. A 
count of degenerate dimensions, such as order numbers, produces 
meaningful results.

Date Transaction Amount Balance
January 1st, 2005
January 2nd , 2005 
January 7th , 2005 
January 9th , 2005 
January 15th , 2005 
January 31st , 2005 
For January

$1000
$900
$1500
$1000
$700
$1700
$6800

-100 (Withdrawal)
+600 (Deposit)
-500 (Withdrawal)
-300 (Withdrawal)
1000 (Deposit)
Total 

Account Balances cannot be added 
across Date (Time) Dimensions

X
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As shown in Figure 6-65 on page 299, adding the monthly balances across the 
different days for the month of January results in an incorrect balance figure. 
However, if we average the account balance to find out daily average balance 
during each day of the month, it would be valid. 

How can account balance be calculated across other dimensions?

We mentioned that a semi-additive fact is a fact that is additive across some 
dimensions but not others. Consider the star schema shown in Figure 6-66 on 
page 301. We see how and why the account balance is additive across the 
Customer, Branch, and Account dimensions, but not across the Date dimension. 
This is shown in Table 6-22.

Table 6-22   Account balance is semi-additive

With the help of SQL queries, we can see that adding account balance along 
other dimensions, except date, can provide a meaningful measure for the total 
amount of money the bank is holding at any given point in time. 

Dimension Account balance 
additive?

Why?

Date NO Explained in example in Figure 6-65 

Branch Yes See SQL query in Example 6-7 and result in 
Figure 6-67.

Account Yes See SQL query in Example 6-8 and result in 
Figure 6-68.

Customer Yes See SQL query in Example 6-9 and result in 
Figure 6-69.
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Figure 6-66   Account balance star schema

We use SQL queries to show that account balances for a single day are additive 
across the following dimension:

� Account balance is additive across Branch. It can be added at a single day 
across the branch dimension. The SQL code to show this is displayed in 
Example 6-7.

Example 6-7   Sample SQL showing balance is additive across branch dimension

Select B.BRANCH_NAME, SUM(F.BALANCE)
From 
Branch B, Account_Balance_Fact F, Date D
where 
B.BRANCH_KEY= F.BRANCH_KEY
and
F.DATE_KEY= D.DATE_KEY
and
D.DATE_DAY=’1’ 
and
D.DATE_MONTH=’January’ 
and
D.DATE_YEAR=’2005’ 
GROUP BY B.BRANCH_NAME

The result of the query in Example 6-7 is shown in Figure 6-67 on page 302. 
It shows that the balance is additive at the branch level.

* Balance can be added across Branch, 
Customer and Account over a single day

Semi-Additive 
Fact
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Figure 6-67   Balance is additive across the branch dimension

� Account balance is additive across Account dimension. Account balance can 
be added at a single day across the account dimension. The SQL code to do 
this is shown in Example 6-8. 

Example 6-8   Sample SQL showing Balance is additive across Account dimension

Select A.ACCOUNT_TYPE, SUM(F.BALANCE)
From 
Account A, Account_Balance_Fact F, Date D
where 
A.ACCOUNT_KEY= F.ACCOUNT_KEY
and
F.DATE_KEY= D.DATE_KEY
and
D.DATE_DAY=’1’ 
and
D.DATE_MONTH=’January’ 
and
D.DATE_YEAR=’2005’ 
GROUP BY A.ACCOUNT_TYPE

The result of the query shown in Example 6-8 is shown in Figure 6-68 on 
page 303. It shows that balance is additive across the Account dimension 
(per account type).

Note: It is important to understand that balance is semi-additive across the 
branch dimension only for a particular day. If we do not include the where 
clause for a day, then the SUM we get is an incorrect figure.

$9090000Oriental Bank of Commerce Branch

$4095962North East Branch

$1000000South West Branch

BALANCEBRANCH NAME

Balance is additive across 
Branch at a single day.

Date: January 1, 2005
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Figure 6-68   Balance is additive across the account dimension

� Account balance is additive across Customer dimension. It can be added at a 
single day across the customer dimension. The SQL code to do this is shown 
in Example 6-9.

Example 6-9   Sample SQL showing Balance is additive across Customer dimension

Select C.CUSTOMER_CITY, SUM(F.BALANCE)
From 
Customer C, Account_Balance_Fact F, Date D
where 
C.CUSTOMER_KEY= F.CUSTOMER_KEY
and
F.DATE_KEY= D.DATE_KEY
and
D.DATE_DAY=’1’ 
and
D.DATE_MONTH=’January’ 
and
D.DATE_YEAR=’2005’ 
GROUP BY C.CUSTOMER_CITY

The result of the query shown in Example 6-9 is shown in Figure 6-69 on 
page 304. It shows that balance is additive per customer city.

Note: It is important to understand that balance is semi-additive across the 
branch dimension only for a particular day. If we do not include the where 
clause for a day, then the SUM we get is an incorrect figure.

$90909111Joint Account

$40666962Long Term Account

$98300000Savings Account

BALANCEBRANCH NAME

Balance is Additive across 
Account Type  at a Single Day.

Date: January 1, 2005
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Figure 6-69   Balance is additive across the customer dimension

(b) Quantity-on-hand (Inventory)
Quantity-on-hand (inventory or stock remaining) is another typical semi-additive 
fact. To understand this, consider a store that maintains inventory for each of its 
products at the end of every month. This is shown in Figure 6-70 on page 305. 
For a product named P99, the store has an inventory of 9000 at the end of 
January, 2005. For the same product P99, the store has an inventory of 5000 at 
the end of February, 8000 at the end of March, 1000 at the end of April, and 2000 
at the end of May. The store’s final inventory (quantity-on-hand) for product P99 
at the end of June, is 1000. 

Note: It is important to understand that balance is semi-additive across the 
branch dimension only for a particular day. If we do not include the where 
clause for a day, then the SUM we get is an incorrect figure. 

Also, if instead of choosing customer city we choose customer name, the sum 
of the balance could get summed up as a single value for all people having the 
same names. That is, if there were the customers with the name Suniti, all 
three balances would have summed up into a single name Suniti. Although 
balance is a semi-additive fact across the Customer dimension, it is for the 
user to decide whether or not the case for semi-additivity is good or not for a 
particular column. 

$998899889Munirka and Mayur Vihar City

$4095962Bombay

$9999000New Delhi

BALANCECUSTOMER CITY

Balance is Additive across 
Customer City at a Single Day.

Date: January 1, 2005
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Figure 6-70   Quantity-on-hand is semi-additive

As shown in Figure 6-70, adding the month end quantity-on-hand stocks across 
the different months results in an incorrect balance figure. However, if we 
average the quantity on hand to find out the monthly average balance during 
each month of the year, it is valid. 

How can Quantity-on-hand be calculated across other dimensions?

A semi-additive fact is a fact that is additive across some dimensions, but not 
others. Consider the star schema shown in Figure 6-71 on page 306. We can 
see that the quantity-on-hand is additive across the product and store 
dimensions but not across the Date dimension. This is shown in Table 6-23.

Table 6-23   Quantity-on-hand is semi-additive

With the help of SQL queries, we will see that adding quantity-on-hand along 
other dimensions such as store can provide a meaningful measure for the total 
quantity of products the stores are holding at any given point in time. We will also 
see that adding quantity of stock remaining across product (category) or product 

Dimension Account balance 
additive?

Why?

Date NO Explained in Figure 6-65. 

Product Yes See SQL query in Example 6-7 and result in 
Figure 6-67.

Store Yes See SQL query in Example 6-8 and result in 
Figure 6-68.

Product Name Month Ending Quantity on Hand
P99
P99
P99
P99 
P99
P99
For January

9000
5000
8000
1000
2000
1000
2600

January
February
March
April
May
June
Total 

Quantity-on-hand, or Remaining Stock 
Balance, cannot be added across 

Date (Time) Dimensions

X
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(name) gives us an idea of the total stock remaining (across all stores) at a given 
point in time.

Figure 6-71   Store inventory on hand star schema

We use SQL queries to show that quantity-on-hand for every month is additive 
across the following dimensions:

� Store dimension. In Example 6-10, we provide the SQL code we used to 
show that Quantity-on-hand can be added for every month across the store 
dimension.

Example 6-10   Sample SQL: Quantity-on-hand additive across Store dimension

Select S.STORE_CITY, SUM(F.QUANTITY_ON_HAND)
From 
Store S, Quantity_On_Hand_Fact F, Date_Month D, Product P
where 
S.STORE_KEY= F.STORE_KEY
and
F.MONTH_KEY= D.MONTH_KEY
and
F.PRODUCT_KEY= P.PRODUCT_KEY
and
D.DATE_MONTH=’January’ 
and
D.DATE_YEAR=’2005’ 
and
P.PRODUCT_NAME=’P99’ // NOTE: Important to include otherwise we get a sum of 
//all unrelated products
GROUP BY S.STORE_CITY

Semi-Additive Fact

* Quantity-on-hand can be added across 
Product and Store for every Month
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The result of the query from Example 6-10 on page 306 is shown in 
Figure 6-72. It shows the quantity-on-hand addition per store city for a 
particular product. However, it is important to note that you should include the 
product name in the where clause to specify a particular product. If we did not 
include the product in the where clause, we would get a report showing the 
sum of all products (P1 + P2 + P3 + P4 + P5 + ......... Pn) that are present in 
any store city. We certainly do not want that because if we add the sum of all 
remaining products (quantity-on-hand) for products such as CDs, pencils, 
paper, books, and pens, it would result in a meaningless value. 

Figure 6-72   Quantity-on-hand is additive across the store dimension

� Quantity-on-hand is additive across product. It can be added for every month 
across the product (category) dimension. When we sum up all products 
present inside a category of a store, we have the quantity-on-hand for all 
products belonging to a particular category of a particular store. The SQL 
code to show this is depicted in Example 6-11.

Example 6-11   Sample SQL: Quantity-on-hand additive across product dimension

Select P.PRODUCT_CATEGORY, SUM(F.QUANTITY_ON_HAND)
From 
Quantity_On_Hand_Fact F, Date_Month D, Product P, Store S, 
where 
F.MONTH_KEY= D.MONTH_KEY
and
F.PRODUCT_KEY= P.PRODUCT_KEY
and

Note: It is important to understand that balance is semi-additive across the 
branch dimension only for a particular day. If we do not include the where 
clause for a day, then the SUM we get is an incorrect figure.

90900000San Mateo

40959600San Jose

10000009New Delhi

QUANTITY ON HAND STORE CITY

Quantity on Hand is Additive 
across Store City For Every 

Month for a single Product (P99)

Month Ending: January

*One city can have 
many Stores

Product :P99
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F.STORE_KEY= S.STORE_KEY
and
D.DATE_MONTH=’January’ 
and
D.DATE_YEAR=’2005’ 
and
S.STORE_NAME=’S1’ 

GROUP BY P.PRODUCT_CATEGORY

The result of the query shown in Example 6-11 on page 307 is shown in 
Figure 6-73. However, there is an important note here. It is important to 
include the store name in the where clause to make it a particular store. If we 
do not include the store in the where clause, we would get a report showing 
the sum of all products belonging to the same category (P1 + P2 + P3 + P4 + 
P5 + .........Pn) that are present in any store. The result shows that 
quantity-on-hand is additive per product category per store. 

Figure 6-73   Quantity-on-hand is additive across the product dimension

6.4.3  Composite key design for fact table
A fact table primary key is typically comprised of multiple foreign keys, one from 
each dimension table. Such a key is called a composite or concatenated primary 
key. It is not a mandatory rule to have all the foreign keys included as the primary 
key of the fact table. Sometimes, only a few combinations of foreign keys will be 
used.

Note: It is important to understand that “quantity on hand” is semi-additive 
across the branch dimension only for a particular day. If we do not include the 
where clause for a day, then the SUM we get is incorrect.

949202Milk

4039032Cereal

20030445Meat

QUANTITY ON HANDPRODUCT CATEGORY

Quantity on hand is additive 
across Customer City at a 

Single Day.

Date: January 1, 2005
Store: S1

* Quantity on hand is 
additive across 

product per store
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Also, it is not always true that the combination of all foreign keys of the 
dimensions in the fact table will guarantee the uniqueness of the fact table 
primary key. In such situations, you may need to include the degenerate 
dimension as a component inside the primary key of the fact table. It is 
mandatory that such a primary key be unique. 

Composite primary keys and uniqueness

Does the composite primary key design consisting of all dimension foreign keys 
guarantee uniqueness? The answer is that uniqueness of the composite primary 
key of the fact table is guaranteed by the grain definition and it is not a rule that all 
dimension keys will always be unique if the grain definition is not enforced 
properly. For example, consider the fact table shown in Figure 6-74 on page 310. 
The granularity of the fact table is at the day level. Therefore, we need to sum all 
of the transactions to the day level. That would be the definition of the fact. 

Consider product dimension, store dimension, date dimension, and fact table as 
shown in Figure 6-74 on page 310. Assume that the product dimension has only 
two bicycle brands - C1 and C2. The date dimension is at the day level and 
contains one row for each day.

Assume that you sell the following number of bicycles on October 22, 2005:

� 4 Bicycles of Brand C1 in the morning at 8:00 a.m.

� 5 Bicycles of Brand C1 in the evening at 6:00 p.m., before the store closes.

Since the grain of the fact table in Figure 6-74 on page 310 is one row for each 
product sold in each store, we will have one row inserted for the sales of Bicycle 
of Brand C1 on October 22, 2005. In this single row, the fact (Sales_Quantity) 
would be 9 (4 + 5). 

Grain guarantees UNIQUENESS of the composite fact primary key

If we design the primary key of the fact table (see Figure 6-74 on page 310) as 
the combination of the foreign keys of all dimensions, then the (Retail_Sales) 
primary key would be composite key of Product_ID, Store_ID, and Date_ID. This 
primary key is guaranteed to be UNIQUE because of the fact that only one row 
will be inserted for each product in each store on a single day. The composite 
primary key UNIQUENESS is guaranteed by the GRAIN of the fact table which 
says that only ONE row is inserted for each product in each store (no matter how 
many times it is sold during the day).

Note: It is important to understand that some or all foreign keys (of 
dimensions) present inside the fact table may guarantee uniqueness and may 
be used to create the primary key of the fact table.
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Figure 6-74   Retail store schema

Suppose that we want to report sales on an hourly basis. To do so, we design a 
star schema as shown in Figure 6-75 on page 311. Assume during a day 
(October 14, 2005) we have the following sales:

� 5 Bicycles of Brand C1 sell at 8:00 a.m.

� 5 Bicycles of Brand C1 sell at 8:30 a.m.

� 2 Bicycles of Brand C1 sell at 11:00 a.m.

� 3 Bicycles of Brand C1 sell at 4:00 p.m.

� 2 Bicycles of Brand C1 sell at 8:00 p.m.

Since the grain of the fact table in Figure 6-75 on page 311 is one row for each 
product sold in each store on an hourly basis, we have 4 rows (instead of five) 
inserted for the sales of Bicycles of Brand C1 for October 14, 2005. 

Note: Only one single row (Selling_Amount=10) will be inserted, two different 
times (8:00 a.m. and 8:30 a.m.) because the grain definition asks us to track 
sales on an hourly basis. If several sales occur for the same product in the 
same hour, then only one single row would be inserted for the product for that 
hour. In other words, the UNIQUENESS of the fact table row (fact composite 
primary key) is guaranteed by the GRAIN definition of the fact table.

Grain = Single product sold in 
each store on a daily basis
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Figure 6-75   Sales schema to report hourly sales

If we design the primary key of the fact table in Figure 6-75 as a composite key 
consisting of the Product_ID, Date_ID, Time_ID, and Store_ID, the primary key 
would be guaranteed to be UNIQUE because the GRAIN of the fact table 
assures that only a single row will be inserted for a single product sold on an 
hourly basis. 

6.4.4  Handling event-based fact tables
Event fact tables are tables that record events. For example, event fact tables are 
used to record events such as Web page clicks and employee or student 
attendance. Events, such as a Web user clicking on a Web page of a Web site, 
do not always result in facts. In other words, millions of such Web page click 
events do not always result in sales. If we are interested in handling such 
event-based scenarios where there are no facts, we use event fact tables which 
consist of either pseudo facts or these tables have no facts (factless) at all.

From a conceptual perspective, the event-based fact tables capture the 
many-to-many relationships between the dimension tables. To better understand 
the concept of event tables, consider the following two examples:

� Example one: Hospital and insurance revenue example

Note: One or more degenerate dimensions may be needed to guarantee the 
uniqueness of the fact table row. A detailed discussion is available in 5.5.6, 
“Composite key design” on page 177.

Grain = Single product sold in 
each Store each Hour
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� Example two: Employee attendance recording 

Assume an Internet Service Provider is tracking Web sites and their Web pages, 
and all the visitor mouse clicks. We consider each of these examples:

Example one: Hospital and insurance revenue example
Consider an example of a hospital which is very busy with patients for the entire 
day. Figure 6-76 on page 313 shows a simple star schema that can be used to 
track the daily revenue of the hospital. The grain of the star schema is a single 
patient visiting the hospital in a single day. The following are the dimension tables 
in the star schema:

� Insurance dimension: Contains one row for each insurance the patient has
� Date dimension: The data at the daily level
� Hospital dimension: A single row for each hospital
� Customer dimension: One row for each customer 

The insurance dimension consists of a Not applicable row or the Does not have 
insurance row. We discussed the concept of Not applicable rows that may be 
present inside a dimension table in “Insert a special customer row for the “Not 
applicable” scenario” on page 150.

If a patient visits a hospital but does not have insurance, then the row in the 
insurance dimension will be the Does not have insurance row. However, if a 
patient visits a hospital and has insurance, then the insurance row specifying the 
type of insurance is attached to the fact table row. 

What this means is that there may be several patients that have insurance, but 
they are visible inside the fact table only when they visit the hospital. Once they 
visit the hospital, a row appears for these patients inside the fact table 
HOSPITAL_DAILY_REVENUE.

So if we have one million customers who have purchased insurance in a month 
and only 1 000 of these visit the hospital, then we would not be able to tell which 
of the 999 000 customers had insurance, but did not visit the hospital. 

From the star schema shown in Figure 6-76 on page 313, we can know about a 
customer (patient) having insurance only after the customer visits the hospital 
and appears in the fact table. This is primarily because the 
HOSPITAL_DAILY_REVENUE fact table records sales-related activity. The 

Note: Event-based fact tables may have pseudo facts or no facts (factless 
facts) at all. We discuss factless fact tables in Example one: Hospital and 
insurance revenue example and pseudo facts in “Example two: Employee 
attendance recording” on page 315. 
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customer appears in this sales table if, and only if, the customer visits the 
hospital and pays for the treatment received. If a customer has insurance, but 
does not visit any hospital, we cannot tell whether or not they have insurance just 
by looking at the schema shown in Figure 6-76. This is also because of the fact 
that the Hospital and Insurance are independent dimensions only linked by the 
HOSPITAL_DAILY_REVENUE fact table.

Figure 6-76   Hospital revenue generating schema

The hospital schema shown in Figure 6-76 can only tell if a customer has 
insurance if the customer visits the hospital.

How to find customers who have insurance but who never came to the 
hospital.

To find out about customers who have insurance, but who have not visited the 
hospital, there are two options:

� Insert a single row for all customers in the fact table (see Figure 6-76) on a 
daily basis, irrespective of whether or not they visit the hospital. If the 
customer does not visit the hospital, then have the fact AMOUNT_CHARGED 
show a value of “0”. However, we do not recommend this option of inserting a 
row for each customer on a daily basis irrespective of whether the customer 
visited the hospital, because the fact table will grow at a very fast rate and 
result in performance issues.

Grain is a Patient visiting a Hospital a single day 
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� Create the event fact table star schema as shown in Figure 6-77 on page 314, 
which consists of the following tables:

– Date dimension: Contains the date on which the person is insured.

– Insurance dimension: One row for each type of insurance.

– Customer dimension: A single row for each customer.

– Insurance_Event _Fact table: An event-based factless fact table. It does 
not record anything other than the fact that a customer is insured. A 
customer getting insured is treated as an Event and so a row is inserted 
into the INSURANCE_EVENT_FACT table.

Finding customers who have insurance but never visited a hospital:

To find out about customers who have insurance but never visited any hospital, 
we do the following:

1. From Figure 6-76 on page 313, find all customers who visited the hospital. 

2. From Figure 6-77, find all customers who have insurance.

3. Find the set difference from step 1 and 2. This would tell you which customers 
had insurance but did not visit the hospital. 

Figure 6-77   Insurance event-based star schema

Note: The INSURANCE_EVENT_FACT fact table is a factless fact table. This 
factless fact table contains only foreign keys and has no facts. It is a factless 
fact table that represents the many-to-many relationship between the various 
dimensions such as date, customer, and insurance.

Grain: 1 row inserted into fact table for each insurance given to 
a customer. (This is treated as an insurance giving event.)
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Example two: Employee attendance recording
In this section we discuss an event fact table consisting of pseudo facts. The 
event-based pseudo fact table is designed for recording the attendance of all 
employees working for a company. Important points to consider while designing 
the attendance recording system for the company are:

� Attendance needs to be recorded for employees in the company.

� Each employee belongs to a department.

� A department may or may not have employees. 

� Attendance is recorded on a daily basis. The time of the employees attending 
the office is also mandatory.

� An employee may or may not have a manager. Some employees do not have 
managers because they are their own managers.

� The reporting manager of the employee also needs to be tracked.

For the requirements stated above, we designed a star schema as shown in 
Figure 6-78 on page 316. The grain of the attendance tracking schema is 
attendance of a single employee every day. The star schema consists of the 
following dimensions:

� Date dimension: Consists of date data at the day level.

� Time dimension: Contains the time of day and the description of the event, 
such as On Time, Late, Early Shift, Afternoon Shift, Night Shift, or Absent. 

� Employee dimension: Data about the employee.

� Department: Department number to which an employee belongs. This table 
also contains a Belongs to No Department row for employees who have no 
department.

� Reporting Manager: Contains all the managers information. It also contains a 
row called No Manager Assigned Yet and another row called Self-Managed. 
These special rows are for people who have yet not been assigned managers 
or for people who are their own managers.

� Project dimension: All the projects in the company. This table also contains a 
special row called No Project Assigned Yet. This is for employees who have 
not been assigned any project, or are into administrative work.

Note: The factless table shown in Figure 6-77 is used in conjunction with an 
ordinary sales fact table (see Figure 6-76) to answer the question which 
customers had insurance but did not go to the hospital?
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� Client dimension: One row for each company client. This table also contains a 
special row called Employee does not work for Client, for employees who 
have no clients as of yet.

The star schema shown in Figure 6-78 contains the 
EMPLOYEE_DAILY_ATTENDANCE fact table. The grain of this fact table is one 
row per employee attendance during each day. One row is inserted into the 
EMPLOYEE_DAILY_ATTENDANCE fact table each time an employee swipes 
his badge while entering the company. The fact, called ATTENDANCE_COUNT, 
gets a value of 1 when the attendance is recorded. For employees who did not 
attend during a given day, a row is inserted with ATTENDANCE_COUNT equal 
to 0.

Figure 6-78   Employee attendance recording

To count the total employee attendance for a month, query on the 
EMPLOYEE_DAILY_ATTENDANCE fact table and restrict data for an employee 
with ATTENDANCE_COUNT=1. We use the COUNT() function to count the 
employee attendance. We could also use the SUM() function and get the same 
result. 

Similarly if we want to find the number of times an employee has been absent in 
a year, we query the EMPLOYEE_DAILY_ATTENDANCE fact table, restrict the 
data for the employee for a particular year, and set ATTENDANCE_COUNT=0. 
We use the COUNT() function instead of SUM because the SUM of all 
ATTENDANCE_COUNT=0 will give us 0 where the COUNT of 

Grain: Attendance of an employee on a daily basis
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ATTENDANCE_COUNT=0 will give the number of times an employee was 
absent. 

Why is the ATTENDANCE_COUNT a pseudo fact?

It is important to understand that ATTENDANCE_COUNT is a pseudo fact. 
Instead of using a “1” for employee presence, we could have used any other 
number or even a character like “Y”. Similarly for tracking the absence of 
employees, we could have set ATTENDANCE_COUNT equal to a character 
such as “N” or alternatively have used any number other than “0”. 

Assume that for tracking employees present on a daily basis, we set 
ATTENDANCE_COUNT=’10’. In this case we cannot SUM the attendance for a 
month (30 days x 10) and say that the attendance is 300. However, if we use 
COUNT, we get a correct number 30, assuming the employee worked for 30 
days.

Similarly, assume that for tracking employee absence on a daily basis, we set 
ATTENDANCE_COUNT=’9’, which signifies that the employee is ABSENT. In 
this case we cannot SUM the attendance for a month (30 days x 9) and say that 
the absence is 270 times. However, if we use COUNT, we get a correct number 
30, assuming the employee was absent for 30 days. 

(c) Internet Web page click event tracking
Figure 6-79 on page 318 shows a factless fact table star schema to track the 
Web sites and each of the pages that has been visited. The grain is a single click 
to a Web page. It is important to understand that the fact table named 
WEB_PAGE_CLICK_FACT is an event-based table and does not have any facts. 
The WEB_PAGE_CLICK_FACT fact table is used to represent a Web page click 
event. The fact table captures many-to-many relationships between the 
dimension tables and does not contain any facts. To calculate the total number of 
Web page clicks per day, we can use the COUNT function on all the combination 
of foreign keys. 
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Figure 6-79   Web page clicking event star schema

6.5  Physical design considerations
In this section, we discuss the following topics:

� DB2 Optimizer and MQTs for aggregate navigation
� Indexing for dimension and fact tables

6.5.1  DB2 Optimizer and MQTs for aggregate navigation
DB2 Cube Views™ uses DB2 summary tables to improve the performance of 
queries issued to cube models and cubes. A summary table is a special type of a 
materialized query table (MQT) that specifically includes summary data.

You can complete expensive calculations and joins for queries ahead of time and 
store that data in a summary table. When you run queries that can use the 
precomputed data, DB2 UDB will reroute the queries to the summary table, even 
if the query does not exactly match the precomputed calculations. By using 
simple analytics such as SUM and COUNT, DB2 UDB can dynamically 
aggregate the results from the precomputed data, and many different queries 
can be satisfied by one summary table. Using summary tables can dramatically 

Grain: A single click on a Web page
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improve query performance for queries that access commonly used data or that 
involve aggregated data over one or more dimensions or tables. 

Figure 6-80 shows a sample dimensional model based on a snowflake schema 
with a Sales facts table, and Time, Market, and Product dimensions. The fact 
table has measures and attributes keys, and each dimension has a set of 
attributes and is joined to the facts object by a facts-to-dimension join. 

Figure 6-80   Sales dimensional model

The hierarchy for each dimension in the dimensional model is shown in 
Figure 6-81 on page 320. The boxes connected by the thick dark lines across the 
hierarchies represent the data that actually exists in the base tables. Sales data 
is stored at the Day level, Store level, and Product level. Data above the base 
level in the hierarchy must be aggregated. If you query a base table for sales 
data from a particular month, DB2 UDB dynamically adds the daily sales data to 
return the monthly sales figures. 
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Figure 6-81   Hierarchy showing product, market, and time

The sample query in Example 6-12 shows the sales data for each product line, in 
each region, by each month in 2004.

Example 6-12   Sample SQL showing sales by product line, region, and month

SELECT LINE_ID, REGION_NAME, MONTH_NUMBER, SUM(SALES)
FROM TIME, STORE, LOCATION, PRODUCT, LINE, SALESFACT
WHERE SALESFACT.STOREID = STORE.STOREID
  AND STORE.POSTALCODEID = LOCATION.POSTALCODEID
  AND SALESFACT.PRODUCTID = PRODUCT.PRODUCTID
  AND PRODUCT.LINEID = LINE.LINEID
  AND SALESFACT.TIMEID = TIME.TIMEID
  AND YEAR = '2004'
 GROUP BY LINEID, MONTH_NUMBER;

The line connecting Line-Region-Month in Figure 6-81 represents the slice that 
the query accesses. It is a slice of the dimensional model and includes one level 
from each hierarchy. You can define summary tables to satisfy queries at or 
above a particular slice. A summary table can be built for the Line-Region-Month 
slice that is accessed by the query. Any other queries that access data at or 
above that slice including All Time, Year, Quarter, All Markets, All Products, and 
Family can be satisfied by the summary table with some additional aggregating. 
However, if you query more detailed data below the slice, such as Day or City, 
the summary table cannot be used for this more granular query. 

In Figure 6-82 on page 321, a dotted line defines the Line-State-Month slice. A 
summary table built for the Line-State-Month slice can satisfy any query that 
accesses data at or above the slice. All of the data that can be satisfied by a 
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summary table built for the Line-State-Month slice is included in the set of boxes 
inside the “dashed line” area.

Figure 6-82   Summary table slice

The rewriter in the DB2 SQL compiler knows about existing summary tables, and 
can automatically rewrite queries to read from the summary table instead of the 
base tables. Rewritten queries are typically much faster because the summary 
tables are usually much smaller than the base tables and contain preaggregated 
data. Queries continue to be written against the base tables. DB2 UDB decides 
when to use a summary table for a particular query and will rewrite the query to 
access the summary tables instead, as shown in Figure 6-83 on page 322. The 
rewritten query accesses a summary table that contains preaggregated data. A 
summary table is often significantly smaller, and therefore significantly faster, 
than the base tables and returns the same results as the base tables.

You can use the DB2 EXPLAIN facility to see if the query was rerouted, and if 
applicable, to which table it was rerouted. 
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Figure 6-83   Query Rewrite using DB2 Optimizer

The query to see the sales data for each product line, in each region, by each 
month in 2004, can be rewritten to use the summary table built for the 
Line-Region-Month slice. The original query is shown in Example 6-13.

Example 6-13   Sample SQL to show original query

SELECT LINE_ID, REGION_NAME, MONTH_NUMBER, SUM(SALES)
FROM TIME, STORE, LOCATION, PRODUCT, LINE, SALESFACT
WHERE SALESFACT.STOREID = STORE.STOREID
  AND STORE.POSTALCODEID = LOCATION.POSTALCODEID
  AND SALESFACT.PRODUCTID = PRODUCT.PRODUCTID
  AND PRODUCT.LINEID = LINE.LINEID
  AND SALESFACT.TIMEID = TIME.TIMEID
  AND YEAR = '2004'
 GROUP BY LINEID, MONTH_NUMBER;

The rewritten query is shown in Example 6-14.

Example 6-14   SQL to show rewritten query

SELECT LINE_ID, REGION_NAME, MONTH_NUMBER, SUM(SALES)
FROM SUMMARYTABLE1 
WHERE YEAR = '2004'
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GROUP BY LINE_ID, REGION_NAME, MONTH_NUMBER;

The rewritten query is much simpler and quicker for DB2 UDB to complete 
because the data is preaggregated and many of the table joins are precomputed 
so DB2 UDB accesses one small table instead of six tables, including a large fact 
table. The savings with summary tables can be tremendous, especially for 
schemas that have large fact tables. For example, a fact table with 1 billion rows 
might be preaggregated to a summary table with only 1 million rows, and the 
calculations involved in this aggregation occur only once instead of each time a 
query is issued. A summary table that is 1000 times smaller is much faster than 
accessing the large base tables. 

In this example, Figure 6-84 shows the summary table for the Line-State-Month 
slice. DB2 UDB needs to calculate data for Region from the higher level State 
instead of from the lower level Store, so the summary table has fewer rows than 
the base tables because there are fewer states than stores. DB2 UDB does not 
need to perform any additional calculations to return sales data by Month and 
Line because the data is already aggregated at these levels. This query is 
satisfied entirely by the data in the summary table that joins the tables used in 
the query ahead of time and the joins do not need to be performed at the time the 
query is issued. For more complex queries, the performance gains can be 
dramatic.

Figure 6-84   Summary table created for line-region-month slice

In some cases, a query might access an attribute that is related to an attribute 
that is included in the summary table. The DB2 optimizer can use functional 
dependencies and constraints to dynamically join the summary table with the 
appropriate dimension table. 

When the Optimization Advisor recommends a summary table, all of the 
measures in the dimensional model are included. In this example, the 
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SalesFacts object has only five measures including sales, cost of goods, 
advertising, total expense, and profit, which are all included in the summary 
table. If you define fifty measures for your dimensional model, all fifty measures 
are included in the summary table. The Optimization Advisor does not need to 
include all of the related attributes that are defined for a level in the summary 
table because DB2 Cube Views defines functional dependencies between the 
attributes in a level.

6.5.2  Indexing for dimension and fact tables
In this section we show how to design indexes for one particular star schema. 
The output of our activity is data definition language (DDL).

We also show the different access paths the RDBMS optimizer uses for indexed 
and non-indexed star schemas.

We have a star schema with three dimensions (date, customer, and product) and 
a fact table called SALES. The fact table has three foreign keys. The three foreign 
keys together with the degenerate dimension INVOICE_NO (Invoice Number) 
forms the primary key of fact table. This is shown in Figure 6-85 on page 325.

The following are the hierarchies involved with the dimensions:

� The hierarchy of the PRODUCT dimension is Supplier  Beverage group  
Beverage  Name. 

� The hierarchy for the CUSTOMER dimension is Region  Country  State 
City  Name.

� The hierarchy with the DATE dimension is Year  Quarter  
Month_of_year  Day. 
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Figure 6-85   Star Schema 

First of all we design indexes for dimensions tables
� Primary key (PK), if not generated by RDBMS

� Unique indexes for each dimension hierarchy supporting joins (create them if 
they are not generated by RDBMS automatically):

CREATE INDEX CUSTOMER_PK_IDX ON CUSTOMER (CUSTOMER_KEY)
CREATE INDEX PRODUCT_PK_IDX ON PRODUCT(PRODUCT_KEY)
CREATE INDEX DATE_PK_IDX ON DATE (DATE_KEY)

� Non-unique indexes for each dimension's hierarchy level:

CREATE INDEX CUSTOMER_NA_IDX ON CUSTOMER (NAME,CUSTOMER_KEY)
CREATE INDEX CUSTOMER_TY_IDX ON CUSTOMER (TYPE,CUSTOMER_KEY)
CREATE INDEX CUSTOMER_CI_IDX ON CUSTOMER (CITY,CUSTOMER_KEY)
CREATE INDEX CUSTOMER_ST_IDX ON CUSTOMER (STATE,CUSTOMER_KEY)
CREATE INDEX CUSTOMER_CO_IDX ON CUSTOMER (COUNTRY,CUSTOMER_KEY)
CREATE INDEX CUSTOMER_RE_IDX ON CUSTOMER (REGION,CUSTOMER_KEY)

CREATE INDEX DATE_D_IDX ON DATE (DAY_AD,DATE_KEY)
CREATE INDEX DATE_M_IDX ON DATE (MONTH_OF_YEAR,DATE_KEY)
CREATE INDEX DATE_Q_IDX ON DATE (QUARTER,DATE_KEY)
CREATE INDEX DATE_Y_IDX ON DATE (YEAR_AD,DATE_KEY)

CREATE INDEX PRODUCT_NA_IDX ON PRODUCT (NAME,PRODUCT_KEY)
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CREATE INDEX PRODUCT_BE_IDX ON PRODUCT (BEVERAGE,PRODUCT_KEY)
CREATE INDEX PRODUCT_BG_IDX ON PRODUCT (BEVERAGE_GROUP,PRODUCT_KEY)
CREATE INDEX PRODUCT_SU_IDX ON PRODUCT (SUPPLIER,PRODUCT_KEY)

� Non-unique Index for the product attribute product_id

CREATE INDEX PRODUCT_PID_IDX ON PRODUCT (PRODUCT_ID,PRODUCT_KEY)

� Optionally create indexes for selected dimension hierarchy:

CREATE INDEX PRODUCT_H1_IDX ON PRODUCT (BEVERAGE,NAME,PRODUCT_KEY)

Index for fact table foreign keys
CREATE INDEX SALES_FK_PROD_IDX ON SALES (PRODUCT_KEY)
CREATE INDEX SALES_FK_CUST_IDX ON SALES (CUSTOMER_KEY)
CREATE INDEX SALES_FK_DATE_IDX ON SALES (DATE_KEY)

Differences between indexed and non-indexed star schemas
In the following section we show the differences between the access paths the 
RDBMS optimizer chooses for indexed and non-indexed star schemas for Dicing 

Note: Including the PK of the dimensional table in the index eliminates 
additional fetching of the PK values from the dimension table. 

Note: Including the dimension hierarchy in an index eliminates additional 
fetching of attributes from dimension tables. This approach is not typically 
applicable, because the index tables can be quite large.

Note: After each change in the physical database you should update statistics 
on tables and indexes. Following is the DB2 command for this action:

RUNSTATS ON TABLE TEST.SALES ON ALL COLUMNS WITH DISTRIBUTION ON ALL 
COLUMNS AND INDEXES ALL

RUNSTATS ON TABLE TEST.PRODUCT ON ALL COLUMNS WITH DISTRIBUTION ON 
ALL COLUMNS AND INDEXES ALL

RUNSTATS ON TABLE TEST.CUSTOMER ON ALL COLUMNS WITH DISTRIBUTION ON 
ALL COLUMNS AND INDEXES ALL 

RUNSTATS ON TABLE TEST.DATE ON ALL COLUMNS WITH DISTRIBUTION ON ALL 
COLUMNS AND INDEXES ALL
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and Slicing. Generally if an index is not created, the RDBMS must read all tables 
in one continuous scan.

Access plans for OLAP activity
In this section we show the access plans of the query optimizer, and which 
indexes are used. We also show the same execution times for OLAP Slice and 
Dice query.

For DICE

In Figure 6-86 we show a Dice example for beverage group and region.

Figure 6-86   Beverage group: Beverage: Product x Region

The figures and labels in Figure 6-86 were obtained by the SQL statement shown 
in Example 6-15.

Example 6-15   Select statement for Dice

select P.BEVERAGE_GROUP,P.BEVERAGE,C.REGION,
sum(S.SALES_AMOUNT) as SALES_AMOUNT
fromTEST.SALES S

joinTEST.PRODUCTP
  on (S.PRODUCT_KEY = P.PRODUCT_KEY)
joinTEST.CUSTOMER C
  on (S.CUSTOMER_KEY = C.CUSTOMER_KEY)

group byP.BEVERAGE_GROUP,
P.BEVERAGE,
C.REGION

Whiskey              Whiskey Stan Long
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Figure 6-87 shows the access plan of the optimizer for the SQL Dice example. 
The optimizer decided to read entire tables in one scan, and then used a hash 
join rather than fetching rows by index and joining them with the other table rows 
in a loop.

Figure 6-87   Access plan for Dice

For Slice
In Figure 6-88, we show a slice example for beverage Wine Oak.

Figure 6-88   Slice for Product dimension

The SQL query for the slice where BEVERAGE_GROUP='Wine Oak', is shown in 
Example 6-16 on page 329.

RETURN 27 timerons

GRPBY

TBSCAN

SORT

HSJOIN

TBSCAN HSJOIN

TEST.CUSTOMER TBSCANTBSCAN

TEST.PRODUCTTEST.SALES
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Example 6-16   Select statement for Dice

select S.BEVERAGE, NAME, sum(P.SALES_AMOUNT) as SALES_AMOUNT
from TEST.SALES P
join TEST.PRODUCT S
on (P.PRODUCT_KEY = S.PRODUCT_KEY)
whereS.BEVERAGE in ('Wine Oak')
group by S.BEVERAGE, NAME

In Figure 6-89 on page 330 we show the access plan for the star schema without 
indexes, with indexes, and with an index (Product_H1_IDX) on a the following 
attributes (BEVERAGE,NAME,PRODUCT_KEY). We get the following results:

� Without indexes, the optimizer reads the data with table scans.

� With PK and FK indexes, the optimizer use the Indexes to fetch and join 
Product and Sales tables. Therefore, reading the entire fact table was 
eliminated.

� With Index carrying the Product dimension hierarchy, the access path is 
simpler because it eliminates a few tasks on the product table. However, this 
does not significantly decrease execution time.

The estimated processing time for fact table (1000000 rows) and Product 
dimension in our scenario is listed in Table 6-24. Results show that the indexed 
star schema for our Slice example performs best.

Table 6-24   Estimated and measured processing times 

* Timerons are a hybrid value made up of the estimated CPU, elapsed time, I/O, 
and buffer pool consumption that DB2 expects the SQL will consume when using 
a particular access path. 

Index Estimated 
[timerons*]

NO 27

PK, FK, and dimension 10

PK, FK dimension, and 
Product hierarchy

9

Note: The estimated time given by the RDBMS tool is a good guide for 
designing indexes, but only repeatable measurement of real execution (10 
times) gives reliable average values. We used the DB2 Command Center 
access plan utility to get estimates and access plans, and DB2batch to 
measure execution values.
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Figure 6-89   Access plan for slice

6.6  Handling changes
In this section we discuss how to deal with changes. The dimensional model 
should be designed to handle changes to the:

� Data
� Structure
� Business requirements

6.6.1  Changes to data
To maintain history in the dimensional model, we have different change handling 
strategies. The strategies depend upon whether the dimension changes slowly or 
changes very fast. The following list describes different approaches for handling 
changes to various types of dimensions:

� Slowly changing dimensions: Slowly changing dimensions change slowly 
over a period of time. The different approaches to handle slowly changing 
dimensions are:

– Type-1: Overwrite the existing value.
– Type-2: Insert a new row.
– Type-3: Add one or more columns in the dimension to store changes.

We discussed slowly changing dimensions in detail in 6.3.5, “Slowly changing 
dimensions” on page 261.

RETURN

GRPBY

NLJOIN

TEST SALES

FETCHIXSCAN

IXSCAN TEST SALESPRODUCT_H1_IDX

SALES_FK_PROD_IDXTEST.PRODUCT

With Index

RETURN

GRPBY

NLJOIN

FETCH 0.1

TEST SALES

TBSCAN

PRODUCT_BE_IDX

IXSCAN

TEST.PRODUCT

TEST.PRODUCT

IXSCAN TEST SALESSORT

SALES_FK_PROD_IDXFETCH(12) 0.1

RETURN

GRPBY(3)

TBSCAN(5)

SORT

HSJOIN

TEST.SALES TEST.PRODUCT

TBSCAN TBSCAN

Without Index With Index Product_H1_IDT
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� Very fast changing dimensions: Fast changing dimensions are dimensions 
whose attributes change very rapidly over a period of time. The approach to 
handling fast changing dimension is to split the rapidly changing dimension 
into one or more mini-dimensions. We discussed fast changing dimensions in 
detail in “Handling fast changing dimensions” on page 269.

6.6.2  Changes to structure
Changes to the structure of a dimensional model may occur because of any of 
the following reasons:

� Addition of a new dimension to the star schema: This may occur when the 
business needs to view existing data across a new dimension are not present 
in the model. The new dimension can be easily added to the model if it does 
not violate the grain of the fact table. This is one of the primary reasons we 
recommend to design the model at the lowest granularity. Then additional 
changes to business requirements in the form of new dimensions can be 
added easily to the existing structure. Assume that you add a new dimension 
to an existing model on 2/2/2005. Whenever you do so, you must be sure to 
include an informational row containing information, such as No Data for 
prior to Date 2/2/2005, inside this new dimension. All previous rows in the 
fact table are then linked to this row for all rows inserted in the fact table 
before the new dimension was made available. 

� Addition of a new attribute to a dimension: A new attribute can be added 
to any existing dimension provided the new attribute is true to the grain. If the 
attribute takes on a single value in the context of the fact measurements, then 
the new attribute can be added to the existing dimensional model. Assume 
that you add a new attribute to an existing model on 2/2/2005. When you do 
so, you must be sure to include an informational value, such as Not 
Applicable prior to Date 2/2/2005, inside this new attribute for all the old 
dimension rows for which new dimension attribute is not applicable and has 
no value. 

� Addition of a new fact to the fact table: A new fact can be added to the 
existing fact table provided the new fact is true to the grain. If the fact is valid 
for the existing grain definition, then it can be added to the existing star 
schema. Assume that you add a new fact to an existing fact table on 2/2/2005. 
Whenever you do so, you must be sure to include an informational value such 
as 0 inside this new fact for all the old fact rows for which new fact is not 
applicable and has no value.

� Granularity of the dimensional model: The change in the grain definition is 
also a cause for the structure of the dimensional model to change. This 
occurs primarily when the existing dimensional model was designed at a 
lower grain, thereby missing certain dimensions and facts which were 
available at a lower grain definition. If the business at a later time requires new 
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dimensions to be made available at an existing lower detailed grain model, 
this is generally possible only if the entire model is redesigned by defining a 
more detailed atomic grain. 

For more information on this topic, refer to 6.2.2, “Importance of detailed 
atomic grain” on page 228. 

6.6.3  Changes to business requirements
Dimensional models, if designed at the most atomic detailed grain, can 
accommodate a change in business requirements very easily. If the grain is 
defined carefully, then the dimensional model can withstand business 
requirement changes easily without any change in the front-end applications. 
The change is typically transparent to applications. 

Typically, any change to business requirements may lead to one or more of the 
following:

� Addition of a new dimension
� Addition of a new dimensional attribute
� Addition of a new fact
� Change in the granularity of the fact table or the entire dimensional model
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Chapter 7. Case Study: Dimensional 
model development

In this chapter we describe in detail how to methodically apply the Dimensional 
Model Design Life Cycle (DMDL) when designing a dimensional model. 

The goal of this case study is to show the usage of the DMDL technique when 
applied to specific business requirements. For that, we will follow the DMDL 
technique step by step, describing our assumptions and explaining the decisions 
taken during the process. 

The design of the dimensional model was developed using the IBM Rational® 
Data Architect product. 

7
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7.1  The project
In the following sections we describe a fictitious project as a case study. We 
define the scope and objectives, and relate them to the requirements of a 
fictitious client. This is a good test case to see that a good dimensional model 
can be achieved by following the DMDL.

7.1.1  The background
In this fictitious case study, the client has been suffering during many years of not 
having a data warehouse solution. With many systems spread through many 
countries, and many databases created for ad hoc and local transaction 
management purposes, the client was not able to effectively consolidate the data 
in a manner that satisfied the reporting requirements. In order to solve this 
problem, the client decided to build a data warehouse. After some time, and a 
few iterations, the client finished implementing a data warehouse. It had all the 
subject areas that, from the business point of view, represented significant 
strategic value. 

The new data warehouse, depicted in Figure 7-1 on page 335, provided a 
consolidated view of the company data that they were looking for, and satisfied 
most of their stated requirements for standard reporting. Initially, the reporting 
needs were more of a static nature. In other words, once reports were written, 
they did not need to be rewritten or changed. However, as the number of users of 
the data warehouse grew, the reporting requirements became more complex in 
nature. The client soon realized that the reports started changing dynamically. 

These changes were primarily because the business realized the potential of 
data available in the data warehouse and the client wanted to analyze 
information in a number of new and different ways. In other words, the value of 
analyzing the data was realized and thus emerged the requirement for more ad 
hoc reporting. This change in reporting business requirements resulted in more 
dependence on the reports, and an increased requirement for programmers to 
develop them. The increase in the number of reports and the increase in the 
volume of data accessed by them, started to drastically impact the performance 
of the reports. Upon analysis, the client determined this was primarily because 
the data warehouse data was in 3NF, and based on an E/R model.
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Figure 7-1   Client Data Warehouse Architecture

In addition, because of the complexity of the E/R model, it was extremely difficult 
for the business users to query the data warehouse on an ad hoc basis. 

To solve the performance problem, the client created a new set of denormalized 
tables in the data warehouse. The purpose was to help the users get a faster 
response time when accessing their reports. In addition, it was also expected 
that the users would be able to do ad hoc reporting against this new layer 
branching out from the warehouse. This process of denormalizing several tables 
was done on a report-by-report basis. Soon, it was observed that the client 
ended up with a formal data warehouse, plus a huge number of very highly 
denormalized tables. These denormalized tables were supposed to provide easy 
and fast access to the data. However, in reality, it turned out that the data across 
the tables was not consistent and the tables were still complex, in cases even 
more complex, to interrelate, link, and maintain, than that in the data warehouse. 
This made the new data warehouse very inefficient to be used as a data source 
for reporting purposes.

The client realized the problems of creating denormalized tables for each report 
and decided to adopt another strategy. Following the same iterative approach 
that the client had already successfully applied for the development and 
implementation of the data warehouse, the client decided to start a new project 
to implement and maintain new data structures in the form of dimensional 
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databases (also called data marts) that would allow reporting and data analysis 
tasks in the way the business was demanding. The dimensional models would 
not only help the clients with ad hoc analysis but also would be easier to read 
and understand. In addition to this, the dimensional models would give much 
better performance when compared to the E/R modeled data warehouse tables. 
The client was confident that the necessary data was not only available but also 
quality checked in the data warehouse. This important exercise of quality 
checking the data was done by the data warehouse development team. So now 
the client was ready to implement dimensional models from the data warehouse. 

To help the team learn the proper design skills needed for dimensional design, 
the client decided to approach the problem in a more efficient way. That meant 
sending the project manager, a business analyst, a data modeler, the Enterprise 
IT architect, and a couple of developers to a training center for education on 
dimensional modeling. In addition to learning dimensional modeling techniques, 
they became familiar with a methodology called DMDL. 

To review DMDL and dimensional modeling technique, review Chapter 5, 
“Dimensional Model Design Life Cycle” on page 103. There we see that to design 
a dimensional model, we should first identify a business process candidate. The 
next step is then to identify the corresponding dimensional models that would be 
developed and implemented. And that is the methodology we used in this case 
study. But before we do that, we will try to understand more about the company’s 
business.

7.2  The company
The Redbook Vineyard was founded in 1843 in Spain, in the region of La Rioja. It 
started producing and selling its own wine, first locally and then spread through 
most of Europe. The company specialized in Rioja wine and for many years the 
sales of this wine continued to represent its primary source of income.

In 1987, Redbook Vineyard acquired a distributor of alcoholic and non-alcoholic 
drinks and moved the corporate office to Madrid, Spain. Since then, it has also 
incorporated other non-drinkable items, such as T-Shirts. 

The company is number ten in sales of spirits, and number three as a wine 
producer in Europe, having a market share of 4% and 23%, respectively. 

7.2.1  Business activities
The Redbook Vineyard is an old company owned by one family. Since 1843, they 
have been producing their own wine mainly made with mazuela grapes 
harvested from different wine locations across the La Rioja region. The wine is 
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produced at their winery in La Uvilla. The production of wine includes different 
activities, from buying grapes, though the wine processing, to the distribution of 
the wine in bottles to customers.

In 1987 the Redbook Vineyard decided to broaden their activity portfolio and 
started to distribute major brands of wine and spirits to America and Australia. 
Since then they have established sales branch offices in most of the major 
European cities. 

The Redbook Vineyard has built up very good business relationships with large 
retail store chains over the years, and its market share in spirits and wine is 
about 10% of the entire European market.

The Redbook Vineyard is highly customer-oriented. They collect all 
customer-related information in their Customer Relationship Management (CRM) 
system at each branch location.

In order to manage its business across different countries, the Redbook Vineyard 
uses modern IT systems. For their core businesses, they use an Enterprise 
Resource system (ERP) and a CRM system. In order to support top 
management for decision-based activities, the Redbook Vineyard has just built a 
centralized Enterprise Data Warehouse in Spain.

7.2.2  Product lines
As shown in Figure 7-2 on page 338, the company markets several lines of 
products. However, in reality, the beverages are the products that keep the 
business going for Redbook Vineyard.
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Figure 7-2   Product lines for Redbook Vineyard

The product catalog of the Redbook Vineyard company is divided into two main 
categories:

� Beverages
� Non-beverages

We discuss each of these product categories in more detail below.

Beverages
Beverages are initially any sort of potable drink. During the last few years, 
despite the appearance of new types of drinks, such as light drinksand energy 
drinks, the product structure has not changed. It is however very likely that this 
structure will need to change very soon. As seen in Figure 7-2, the Redbook 
Vineyard presently has the following beverage lines: wine, non-alcoholic, spirits, 
and beer.

We discuss each of these beverage types in more detail below.

Wines
The line of wine covers any sort of wine that has no more than 25% alcohol. That 
includes, for example, sherry and oporto wine, which has a graduation 
significantly higher than normal wine.
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Non-Alcoholic
The non-alcoholic beverages presently include most types of soda with 0% 
alcohol contents. It is foreseen that Redbook Vineyard will market stimulant 
drinks, also called energy drinks, in the near future. In addition to this, milk and 
yogurt drinks will also be experimentally introduced and temporarily distributed to 
a few chosen resellers. Until now dairy drinks were not introduced because of the 
extra overhead involved with these short shelf-life drinks.

Beer
Any sort of beer with under 10% alcohol is included in this line. Beers with an 
alcohol content above 10% are uncommon. Beers with low alcohol content, also 
called light beers, are also marketed under this product line. However, depending 
on the legal clarifications, the client is evaluating the possibility of moving the light 
beers with an alcohol volume of less than 1% into the non-alcoholic product line. 

Spirits
Any other marketed alcoholic drink not covered in the beverage lines previously 
described will be included in this group. Spirits are typically beverages with the 
highest alcohol content. 

Non-Beverages
This is the other product line, apart from beverages. It offers merchandising 
products, such as T-shirts, glasses, and lighters. The company started these 
products in order to support marketing the beverage product line. However, 
objects such as certain jars, or art decó lighters, are very successful and the 
company is considering marketing them separately.

7.2.3  IT Architecture
The Redbook Vineyard IT infrastructure is distributed across the different branch 
offices. Every branch office in every country has its own ERP system. This is 
because each country has different legal requirements. Activities related to the 
customers are covered by the CRM system. The topology of the architecture of a 
typical branch office is shown in Figure 7-3 on page 340.
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Figure 7-3   Typical branch office IT architecture

The data warehouse component, as shown in the Figure 7-3, is the only IT 
component that is centralized. The data warehouse component provides 
services to the Spanish Central location (headquarters) and to the remote users 
from all other European branch offices via corporate virtual private network 
(VPN). The data warehouse is refreshed overnight.

The main consumable data source for business users is the company’s data 
warehouse system of record (SOR), also called the Enterprise Data Warehouse. 
The data in this system is cleansed and reliable. It contains data that originated 
in the different operational systems used at the Redbook Vineyard. 

7.2.4  High level requirements for the project
In the following section, we list the requirements identified for the design and 
implementation of the business intelligence solution that the Redbook Vineyard is 
demanding.

User requirements
� The data mart must have a high business strategic value. This is a critical 

requirement. 
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� Ideally the system availability should be 24 x 7. This is not a critical 
requirement because to have the system available during weekdays and 
office hours would actually suffice.

� The system should be implemented in the shortest period of time possible. 
This is a critical requirement.

� The data must be consistent, reliable, and complete (the truth, the whole 
truth, and nothing but the truth). This is the most critical requirement.

IT requirements
Some of the IT requirements are:

� There should be one decision support system of choice covering all source 
systems with business strategic value within the company.

� Complex advanced analysis should be possible against consolidated data 
from several source systems.

� A generic data warehouse structure should be made available for retail and 
manufacturing processes to store and retrieve data/information.

� The MIS and primary source systems should be separated. This will help 
increase performance for the OLTP systems.

� The data warehouse must include detailed history data to avoid overloading 
OLTP systems when restoring archived tapes for inquiry purposes.

� The data must be standardized by integrating available data standards into 
the data modeling tool.

� There should be a minimum basic meta data management system easily 
accessible, with information about the data warehouse components.

OLAP client requirements
� One central OLAP system should be available.

� A user-friendly GUI should be available to do analytical work with minimal 
assistance. The GUI must permit drag and drop operations to build the OLAP 
queries without having to type field and table names.

7.2.5  Business intelligence - data warehouse project architecture
In Figure 7-4 on page 342, we show the proposed architecture for the data 
warehouse, showing the major components. The shading in the figure 
differentiates between the present architecture and the components needed for 
completing the data warehouse solution. 
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Figure 7-4   High level project data warehouse architecture

The architectural components of the data warehouse, shown in Figure 7-4, are 
as follows:

� Source systems: ERP central systems and CRM systems at each branch 
office.

� Data warehouse environment: Consists of the following sub-components:

– Staging area. This area contains all the data consolidated, preformatted 
and transformed before it is loaded the into System Of Records (SOR) 
area or the Enterprise data warehouse.

– Enterprise data warehouse. This system of records area stores all 
detailed information, including all the company history. It is a highly 
normalized database (designed in 3NF), covering the subject areas with 
the most strategic business value. 

– Analytical area. This includes detailed atomic dimensional models (data 
marts). The data stored in these dimensional models is highly detailed 
and atomic.

– Summary area. The summary area includes the aggregate tables based 
on the detailed analytical dimensional models.

� Reporting: The reporting component includes basic static reports (via SQL 
queries). This will be replaced by a new OLAP/reporting solution.

� OLAP: This component includes advanced analytical function with ad hoc 
capabilities and what-if analysis.
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� External data marts: This component includes the data marts for mobile 
Customer Representatives. 

7.2.6  Enterprise data warehouse E/R diagram
Figure 7-5 shows an example of an E/R diagram. The present enterprise data 
warehouse could have one that looks similar. The objective here is not to show a 
complete E/R diagram that is meaningful. It is simply to demonstrate that the size 
and number of interrelationships can result in quite a complex diagram.

The primary subject areas of the enterprise data warehouse model are:

� Arrangements (AR): consisting of Orders, Invoices, and Orders Lines
� Transactions (TXN)
� Finance
� CRM

Figure 7-5   Physical E/R model 

Note: The dimensional model or the multidimensional database is in the 
analytical area of the data warehouse architecture (see Figure 7-4).
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7.2.7  Company structure
Figure 7-6 shows the company organization structure. The IT and the human 
resources departments are not included in this case study. The structure is the 
same as the one the company had before the business expansion of 1987. The 
company is now considering a reorganization of departments and this chart will 
certainly change. But that should not influence the results of this case study.

Figure 7-6   Company structure

7.2.8  General business process description 
In this section we describe three important aspects of the Redbook Vineyard 
company. They are the:

� Products
� Customers
� Business processes

We now focus on each of these in more detail below.

Products
We discussed the company products in 7.2.2, “Product lines” on page 337. In our 
case study, we focus only on the Beverages line of products as shown in 
Figure 7-7 on page 345, since beverages are the primary source of income for 
the company.
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Figure 7-7   Beverage Items

The products we show in Figure 7-7 were valid at the time of creating the 
diagram. Important points to consider about these beverage items are:

� Products could be ordered and shipped, and therefore they are considered 
active (status = active). 

� There are beverages that are no longer produced (status = discontinued).

� There could also be beverages that are new and are about to be released. 
Although not yet released, new beverages can be ordered (status = new). 

� Another characteristic of the products is their presentation. A beverage is not 
always in bottles. Other forms of presentation include tetrabriks, soft plastic 
bags, and barrels.

� The characteristics of the products normally remain unchanged during their 
lifetimes. However, the structure itself is subject to change every two or three 
years. 

Customers
We now discuss the Redbook Vineyard Company customers who have been the 
key to the company’s success over the years. An example of the customer 
structure is shown in Figure 7-8 on page 346. 
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Figure 7-8   Customer structure example

Important points to note about the Redbook Vineyard customers are: 

� The typical customer is a medium size company that resells the beverages to 
smaller companies and to end-consumers.

� Customers are grouped by classes: "WHOLESALE", "STORE CHAIN", "GAS 
STATION CHAIN", "RESTAURANT", or "SMALL SHOP". 

� The customer gets a credit limit and a discount volume depending upon 
certain factors, such as seniority of the customers, the average order volume 
per year, and the paying discipline of the customer. The credit limit can be any 
amount starting from 10 Euros, and the discount can be between 1% and 
40%. 

� Customers usually have a preferred way of payment, such as money 
transfers, or credit cards. The company assigns payment terms to customers. 
The default is 30 days for existing customers and pay upon delivery for new 
customers. However, this can vary between 5 and 90 days.

� Some customers are small companies, that have just have one department or 
address from which all the orders come. Other customers are multinationals 
with presence in several countries. In some of the countries they have only 
one organization, in others, they have several organizations with divisions 
with different names, but each of them are actually the same company. 

� Customer attributes, such as name or address, usually remain stable and do 
not change across the life of the customer in the company database. There 
are, however attributes, such as credit limit (for example, 10 000 dollars), 
payment terms (for example, 30 days after invoice), payment method (for 
example, bank transfer), and discount (for example, 10%) that are 
recalculated and reassigned monthly. For example, during specific phases, 
such as two months before, and during Christmas, these attributes are 
recalculated on a weekly basis. 
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Business processes
In this section we discuss the business processes that are shown in Figure 7-6 
on page 344. The business processes were accurately and thoroughly 
documented at the beginning of the data warehouse project. Most of the data for 
these business processes was made available in the enterprise data warehouse 
that the Redbook Vineyard company built. However there are a few exceptions. 
These exceptions are mentioned below.

� In this section, we discuss the following business processes of the Redbook 
Vineyard company:

a. Inventory handling (also called Inventory management)
b. Procurement
c. Distribution
d. Production
e. Accounting

i. Payment accounting (also called Credit Controlling)
f. Sales

i. Sales Order Handling 
ii. Sales Invoicing
iii. Sales Marketing/CRM

a. Inventory management
The main function of this process is to manage the inventory. This process is 
responsible for the following:

� Receiving the wine when it is shipped from the bottling plant. In addition to 
this, inventory management is also responsible for receiving other beverages 
that are shipped by external suppliers. 

� The placement of received products in their corresponding storage areas.

� The inventory department maintains inventory levels. Also on a weekly basis, 
the inventory department communicates to the procurement department 
about inventory levels of products. This communication helps the 
procurement team to reorder products depending on the need.

� Inventory is also responsible for packing and shipping the ordered products. 
Although in exceptions where certain items are expensive and need special 
handling, single bottles of certain spirits are separately packaged and sent. 
Normally each product is packaged in boxes or containers of several units 
each. Typically packages will have six, 12, 24, and 100 bottles each. 
Additionally, for better handling of the goods, the packages can be stored on 
pallets which may hold up to 100 packages or boxes. 
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The Redbook Vineyard customers order the goods throughout the year, and, 
therefore, the Redbook Vineyard has its own warehouses in each European 
country. When customers order the product, the Redbook Vineyard fulfills the 
request from the warehouse in the country where the order was placed. If the 
product is not available, then it is shipped from the central warehouse or any 
other close available warehouse. If no warehouse has the ordered goods, then 
Redbook Vineyard orders the goods from the corresponding supplier responsible 
for maintaining the warehouse.

b. Procurement
The main function of this process is to manage the purchase orders sent to the 
suppliers and manufacturing plants. This process, however, has no special 
business strategic relevance, since the main business income is from the wine 
produced by the owning company. The data warehouse contains data about this 
process but at a very summarized level. 

This procurement business process is responsible for: 

� The coordination with the inventory process for stock level maintenance. We 
discussed earlier that inventory communicates to procurement about the 
inventory levels for various products.

� Procurement is responsible for the creation, submission, and tracking of the 
purchase orders. In addition to this, the process also checks and closes the 
order after receiving the ordered goods.

c. Distribution
This is a very straightforward and simple process. This process generates high 
infrastructure costs. It is not part of the core business because the company has 
outsourced it to an external company called Unbroken Glass Hauler Inc. (UGH). 
UGH uses the IBM Informix database manager for its operations. Electronic Data 
Interchange (EDI) is used between the two companies and it has been set up in 
a way that enables periodic transfer of the minimum data necessary to 
coordinate and report the product transport operations. The method of goods 
delivery typically depends on the customer, who will have a preferred method 
such as by truck, train, or plane.

Note: The shipping charges are dependent on the order volume and total 
weight and not the number of items ordered. However there are a few items, 
such as very expensive and luxurious champagne bottles, whose packaging 
and special handling demands that we track the shipping cost per order line 
rather than per order. Therefore, shipping charges are invoiced at the order 
line level and not at the order level. Also, products ordered in one order can be 
shipped from different warehouses.
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d. Production
Presently the company produces only wine. This process is very complex 
because of innovative techniques implemented for the production of wine, and 
no operational data is fed yet into the data warehouse. It is presently supported 
by an ERP application, and if data is needed for reporting or analysis, then the 
ERP application is usually accessed directly without many restrictions. This 
production process mainly covers:

� Planting and collection of wine grapes. 
� Reception, processing of the grapes, and storage in the wine cellars. 
� Bottling and shipping of the wine.

e. Accounting
This process covers all the key financial and accounting aspects of the company. 
However, for similar reasons to the ones pointed out for the distribution process, 
the company is presently evaluating the possibility of outsourcing this process. 
Although the main data is fully available in the data warehouse, there are a 
number of tables that need to be recreated every day and access to them from 
the data warehouse is periodically restricted. This process manages, among 
others, the following:

� Maintenance of the General Ledger.

� Control of the completeness, consistency, and accuracy of all financial 
statements from all the branches and offices worldwide

� Financial reporting to the local authorities

The Accounting process has another sub-process which is called the payment 
accounting process. This process is discussed in more detail below.

e-i. Payment accounting (also called Credit Controlling)

This is a special process working very closely to the sales business process, 
especially regarding the customer credit analysis and reclassifying.

This process is responsible for:

– Ensuring that the customer pays on time and does not owe more than 
their allowed credit limit.

– Analyzing customer debts. The process classifies the customer credit limit 
according to factors such as purchase volume, payment discipline, and 
credit history. This input is further provided to the sales process for 
classifying the customer bonus and discount percentages.

f. Sales
Apart from the production process, which we reviewed earlier, the sales process 
is one of the most complex. This process heavily and directly impacts the 
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generation of revenue and is considered to be highly critical for the business. 
The sales business process encompasses the following: 

� The design, execution, and analysis of marketing campaigns

� Analysis of the market for introduction of new products or elimination of 
non-profitable products

� Responsibility for providing all customer assistance and guidance by a Sales 
Representative

� The reception, handling, and invoicing of the Customer Orders

The sales process is divided into three separate sub-processes. They are sales 
order handling, invoicing, and marketing. We discuss each of these processes 
below.

f-i. Sales Order Handling: This sub-process covers the order handling of the 
sales orders from receiving the order to shipping. It deals with the following:

– Receiving an order and processing it
– Coordination with inventory for shipping purposes
– Coordination with procurement for ordering purposes
– Overall tracking of the sales order 
– Any related customer interaction 

f-ii. Sales Invoicing: The invoicing is less complex than the order handling 
process. But from a reporting standpoint, it is the most important one. This is 
because the main financial and corporate reports are made against the 
invoiced amounts. This process manages:

– Printing and sending the invoice data to the customer

– Quantitative analysis (volumes, regions, customers, and products)

– Financial analysis (total sales, discounts, regions, customers, and 
products)

– Correction or cancellation of invoices for returned or damaged material

f-iii. Sales CRM/Marketing: This sub-process has a objective to analyze to 
decide on the introduction of new profitable beverages. In addition, this 
process also tracks the decrease in the acceptance and market demand of 
existing beverages. Based on this input, a decision is made whether or not to 
continue these beverages. The marketing process responsibilities include:

– Analysis of market by channel and product.

– Ad hoc screening of the market along with the competitors.

– Tracking and analysis of marketing activity (type of actions, regions, and 
customers).
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– The analysis and segmentation of customer groups to allow a better 
targeting during marketing campaigns.

– The execution of marketing campaigns around new or existing products to 
acquire new customers or increase the volume of sales to existing ones. 

– Preparing, performing, and analyzing customer contacts by Sales 
Representatives.

A part of the data needed for the execution of marketing campaigns is delivered 
(purchased) by external companies specialized in market analysis. This data is 
not presently part of the data warehouse, and is usually obtained in the form of 
XML data structures, which, depending on the amount of data, are sent by e-mail 
or by DVD.

7.2.9  Developing the dimensional models
The Redbook Vineyard has decided to design dependent data marts for several 
of its business processes. Each of these dependent data marts would get the 
data from the existing data warehouse. We have understood well the critical 
business needs for which the Redbook Vineyard wants to move forward with this 
initiative. 

But the next question is, where do you start? What do you do first? To help you in 
that decision process, we have designed a Dimensional Model Design Life Cycle 
(DMDL). For a detailed description of the DMDL, see Chapter 5, “Dimensional 
Model Design Life Cycle” on page 103. 

In the remaining sections, we complete the case study by developing a 
dimensional data model for the company. We use the DMDL as a guide to 
demonstrate how it can help to develop a robust and complete dimensional 
model.

In the next section, we start with the first phase which is Identify the 
Requirements.

7.3  Identify the requirements
The first phase of the DMDL starts with identifying the requirements. This phase 
is heavily dependent on analysis of the business processes inside the 
organization. This is shown in Figure 7-9 on page 352. 
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Figure 7-9   Business Process Analysis

The main goals of this phase are to:

� Create an enterprise-wide business process list
� Identify the business process (includes prioritization)
� Identify high level entities and measures for conformance
� Identify various data sources involved
� Identify the requirement gathering approach you would follow
� Gather requirements
� Analyze requirements

7.3.1  Business process list
This is a very straightforward task, assuming that the documentation available 
from the first phase of the project is still up to date. To recall, the Redbook 
Vineyard company implemented a data warehouse for its company a few months 
back. We will not include here the detailed business process descriptions 
because they are very extensive. We identified important business processes in 
detail in 7.2.8, “General business process description” on page 344. They are:
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� Inventory handling (also called Inventory Management)
� Procurement
� Distribution
� Production
� Accounting

– Payment accounting (also called Credit Controlling)
� Sales

– Sales Order Handling 
– Sales Invoicing
– Sales Marketing/CRM

Business process assessment 
In this activity we identify the factors that the company considers most important 
to evaluate each business process. We also prioritize them and assign weights. 
These assessment factors are shown in Table 7-1. 

Table 7-1   Point table for assessment factors

The next step is to relate those factors to each business process and rate each 
combination accordingly. You can see the results in Table 7-2.

Table 7-2   Business process assessment

Assessment 
factor

Low Medium High

Complexity 6 4 2

Data quality and 
availability

3 6 9

Strategic business 2 4 6

System availability 1 2 3

Note: We have mentioned only a few assessment factors in Table 7-1. 
However, we encourage you to assess your business processes across 
various factors while deciding to prioritize a process.

Name of 
business 
process

Complexity Data quality 
and 
availability 

System 
availability 

Strategic 
business 
significance

Distribution Low Medium Low Low

Sales CRM/ 
Marketing

Medium Medium Medium Medium
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Inventory Medium High High Medium

Procurement Medium Medium High Low

Sales Orders Medium High High Medium

Accounting Medium High Medium Low

Production High Low High High

Sales 
Invoicing

Low High High High

Note: We have rated both the data quality and availability, and the 
system availability factors as High for all the processes whose data is 
already present in the data warehouse system of record. For all the 
outsourced processes, or process candidates for outsourcing, we have rated 
the strategic business significance as Low.

Marketing data and system availability has been rated as Medium because 
the data partially comes from external sources.

Name of 
business 
process

Complexity Data quality 
and 
availability 

System 
availability 

Strategic 
business 
significance
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7.3.2  Identify business process
In this activity, we prioritize the business processes. This means we identify the 
most and least feasible process for building a dimensional model. In order to do 
this, we use the Point table for assessment factors as shown in Table 7-1 on 
page 353, and we turn the priority indicators (Low, Medium, and High) into 
numbers. Doing so, we get results depicted in Table 7-3.

Table 7-3   Business process prioritization

Observing Table 7-3 we see that Sales Invoicing has the most points. In other 
words, this means that Sales Invoicing is one of the important and feasible 
business processes. We will then use the Sales Invoicing business process to 
design our dimensional model.

More on the sales process
The corresponding process detailed description is taken from the data 
warehouse documentation, which is relatively fresh and easily accessible. The 
sales process consists of the following processes:

Business 
process

Complexity Data quality 
and 
availability 

System 
availability 

Strategic 
business 
significance

Final points

Distribution 6 6 1 2 15

Sales CRM/ 
Marketing

4 6 2 4 16

Inventory 4 9 3 4 20

Procurement 4 6 3 2 15

Sales Orders 4 9 3 4 20

Accounting 4 9 2 2 17

Production 2 3 3 6 14

Sales 
Invoicing

 6  9  3  4 22

Note: Sales, as a process, is divided into three processes. They are Sales 
Invoicing, Sales Orders, and Sales Marketing/CRM. However, after assessing 
the various business processes, we have found that the Sales Invoicing 
process has the most points.
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One: Sales CRM/Marketing
The Sales CRM/Marketing process involves the following activities and 
procedures:

� A Sales Representative contacts a customer or is contacted by a customer. 
The contact can be established by telephone, e-mail, fax, instant messaging, 
or in person.

� The Sales Representative assists the customers and guides them through the 
purchase decision process. The most important priority is the satisfaction of 
the customer. Next is to generate an immediate sales order.

Two: Sales Order handling
The Sales Order handling process involves the following activities and 
procedures:

� If the sale evolves positively, the Sales Representative enters the order by 
means of a mobile computer. Otherwise, the order can be sent in later, by one 
of the following ways: 

– Online, using the ordering application available through the Redbook 
Vineyard Web page

– By sending a printed copy of the order produced via the Redbook Vineyard 
Web application

– By sending the order using the postal service, fax, or e-mail

� The Customer Order is processed by the sales office closest to the customer 
address. 

� Ordered products are consolidated, within each order, according to their 
product identifiers, so that one product id only appears in one line and no 
more than in one line of the same order. In other words, if a customer orders 
the same product twice in the same order, that same product is represented 
in one line with the total quantity. 

� The sales department sends an order acknowledgement to the customer, 
including the Redbook Vineyard order number and an estimated delivery 
date. 

Note: The customer can access the order form through the Web 
application, print it, and send it later rather than immediately submit it. Both 
existing and new customers can also enter an order via the company Web 
page without having made any previous contact with any Sales 
Representative. 
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Three: Sales invoicing
Sales invoicing involves the following activities and procedures:

� An order can be partially shipped, in which case it can also be partially 
invoiced. The following describes partial order handling:

– Partial order delivery with partial invoice:
This can happen when an item is not in stock, and has to be reordered. In 
this case, only the items available in stock are shipped. The other activities 
in partial shipments are:

• Notify the procurement department of items not available.

• Items in stock have to be shipped immediately.

• The inventory transaction and the invoice amount are registered in the 
General Ledger.

– No partial order delivery:
In this case the order must be entirely shipped at once.

• Notify the procurement department of items not available.

• Order is shipped only when all the items are available.

• The final price is calculated and adjusted.

• The invoice is printed and sent to the customer.

• The inventory transaction and the invoice amount are registered in the 
General Ledger.

– Partial order delivery without partial invoice:
The instructions are the same as the case described above for “Partial 
order delivery with partial invoice” except that the invoice can only be 
produced after the order has been fully shipped.

– Closing the order
After the order has been fully shipped and invoiced, the order is formally 
closed in the system. 

– Returned and damaged material:
A printed invoice cannot be changed. In case of damaged or returned 
material, updates or corrections are performed by issuing a credit note 
(which is the same as an invoice but with a negative amount).

Note: An order item can be shipped from different warehouses. Different 
shipments of the same product are allowed, if having ordered more than 
one unit, the product can only be fully delivered when shipping it from 
different warehouses. Every shipment corresponds to one line in the 
corresponding invoice. An invoice line does not consolidate different 
shipments of the same product.
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Figure 7-10 shows an example of an invoice form. 

Figure 7-10   Example invoice

E/R model for order handling and invoicing
Figure 7-11 on page 359 depicts the tables in the E/R model used by the Sales 
Order handling and Sales Invoicing processes. A dimensional model will be 
designed for the Sales Invoicing business process. 
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Figure 7-11   E/R model for Sales Process

7.3.3  High level entities for conformance
In this activity we identify the entities and measures that need to be consistently 
defined and shared across the different business processes. We were able to 
select the entities from the data warehouse. A sample of those selected are 
shown in Table 7-4 on page 360.

CUSTOMER
CUSTOMER_ID

NAME
ACRONYM
DESCRIPTION

CUST_X_ADR
CUSTOMER_ID [FK]
EFF_DT
SRC_STM_ID
STREET ADR
CITY
STATE
REGION
REF_1
TEL_NO
TLX_NO
ZIP_CD
END_DT

ORDER
ORD_ID
ORD_TP_ID
CST_INV_ID
CST_DVRY_ID
SPL_ID
DAYS_FOR_PAYMENT
DELIVERY_WAY_ID
LNG_ID
ORD_STUS_CD
ORD_DATE
DELIVERY_DATE
BOOKED_DATE
DUE_DT
REF_SPL_TXT
REF_CST_TXT
ORD_DISC_PCT
DSPTCH_NOTE_NBR
CONTRACT_NBR
INV_NBR
CURRENCY_ID [FK]
CUST_ID [FK]
INVOICE_ID [FK]

ORDER_LINE
ORDER_LINE_ID
ORDER_ID [FK]
UNIT_ID
WHS_ID
VAT_ID
ORD_LN_TP
ORD_LN_STUS_CD
DELIVERY_REQ_DT
DELIVERY_CMIT_DT
ORDERED_QTY
ALOCATED_QTY
REAL_QTY
INVOICED_QTY
INPKG_UNIT_QTY
PALETTE_QTY
UNIT_PRICE_AMT
UNIT_COST_PRICE_AMT
VOL_DISCOMNT_PCT
CUSTOMER_DISC_PCT
ORD_LN_DSC1_TXT
ORD_LN_DSC2_TXT
ACCRUED_BONUS_AMT
ORDER_HANDLING_AMT
INV_ID [FK]
PROD_ID [FK]

PRODUCT
PRODUCT_ID
NAME
ACRONYM
DESCRIPTION
BEVERAGE
SUPPLIER_KEY [FK]

INVOCE
INVOICE_ID
INVOICE_DT
BKE_DT
DUE_DT
INVOICE_AMT
VAT_ID
CUSTOMER_ID
SUPPLIER_ID
CURRENCY_ID [FK]
DAY_DATE [FK]
ORDER_ID [FK]
PAYMENT METHOD

PRODUCT_DETAIL
EFF_DT
PRODUCT_ID [FK]
BEVERAGE_GRP
FINANCE_GRP
STATUS
SUPPLIER
PRESENTATION
UNITS_PER_PALLETE
UNITS_PER_PKAGE
VOLUME_LT
ALCOHOL_PCT
UNIT_PRICE
UNIT_COST
END_DATE

CUSTOMER_DETAIL
CUSTOMER_ID [FK]
EFF_DT

DAYS_FOR_PAYMENT
DELIVERY_WAY_ID
FINANCE_GROUP
MARKETIG_CATEGORY
PERENT_ORG_ID
TYPE
END_DATE
BONUS
SALES_REP_ID [FK]
DEFAULT PAYMENT METHOD

DAY
DAY_DATE
MONTH
QUARTER
YEAR

CURRENCY
CURRENCY_ID
NAME
ACRONYM
DESCRIPTION
RNDG_AMT
NBR_DCM_PLC

SALES_REP
SALES_REP_ID [FK]
NAME
ACRONYM
DESCRIPTION
EMPLOYEE_CODE
MANAGER_ID
SALE_OFFICE_ID [FK]

SALES OFFICE
SALE_OFFICE_ID
NAME
ACRONYM
DESCRIPTION
CITY
COUNTRY

EXCHANGE_RATE
CURRENCY_ID [FK]
EFF_DT
EXCHANGE_RATE_TO _EU
END_DT

WAREHOUSE
WAREHOUSE_ID
NAME
ACRONYM
DESCRIPTION
CITY
COUNTRY

INVENTORY
PRODUCT_ID [FK]
WAREHOUSE_ID [FK]
EFF_DT

UNITS_ON_SHELF
END_DT

SHIPMENT
ORDER_LINE_ID [FK]
SHIPMENT_DT
CARRIER
DELIVERY_DT
WAREHOUSE_ID [FK]

SUPPLIER
SUPPLIER_KEY
NATURAL_ID
NAME
CITY
COUNTRY
TELEPHONE_NUMBER
DISCOUNT_PERCENTAGE
CONTACT_PERSON_NAME
OFFICE_HOURS
PURCHASE_WEB_PAGE
PURCHASE_WEB_ACCESS_CODE
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Table 7-4   High level entities

For simplicity, we have limited the sample set of entities in Table 7-4 to only those 
initially needed for the Sales order handling process, rather than all the ones 
needed for the complete process. 

The idea behind this exercise is to find out what entities are common across 
several business processes. Once we are able to find out these common entities, 
we want to make sure that all data marts use common or conformed entities in all 
dimensional models. Each of the business processes are tied together through 
these common entities.

In order to create conformed dimensions that are used across the enterprise, the 
various businesses must come to agreement on defining common basic 
definitions for common entities.

For example, as shown in Table 7-4, the business processes such as Sales, 
Accounting, Inventory, CRM/Marketing, Distribution, Procurement, and 
Production should agree on a common definition of the Beverage (Entity). This is 
because all these business processes have the beverage entity in common. This 
beverage entity may later become a conformed beverage (product) dimension 
which will be shared across all the business processes. However, getting 
agreement on common entities such as Product (beverage) and Customer may 
be difficult because these entities are subjective and their definition will vary from 
one business process to another. On many entities it will be easy to reach 
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Sales Invoicing X X X X X X X X

Accounting X X X X X X

Inventory X X X X X

Sales CRM/Marketing X X X X X

Distribution X X X X X X X

Procurement X X X X X X

Production X X X X

More
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agreement for defining a common definition. For example, entities such as 
stores, dates, and geographies, because these entities and their definitions are 
are fairly straightforward.

7.3.4  Identification of data source systems
In this activity we identify and document the data sources that support the 
business processes described in 7.3.2, “Identify business process” on page 355 
and 7.3.3, “High level entities for conformance” on page 359. The data sources 
are documented in Table 7-5. 

Other information contained in Table 7-5 can be derived from the Redbook 
Vineyard company structure and its business process descriptions as described 
in 7.2.7, “Company structure” on page 344 and 7.2.8, “General business process 
description” on page 344. 

Table 7-5   Data sources for business process

Business 
process

Data 
sources

Data owner Location Platform Data 
update

Sales order 
handling

Enterprise 
data 
warehouse

Sales Madrid DB2 Daily

Sales 
Invoicing

Enterprise 
data 
warehouse

Sales Madrid DB2 Daily

Accounting Enterprise 
data 
warehouse

Finance Madrid DB2 Daily

Inventory Enterprise 
data 
warehouse

Procurement Madrid DB2 Daily

Sales CRM/ 
Marketing

Enterprise 
data 
warehouse
and external 
source 
systems

Sales Madrid DB2/ 
XML file

Daily/ 
upon 
request

Distribution Outsourced 
ERP

Procurement/ 
Sales

Madrid Informix/ 
DB2

Periodic 
Real 
time
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7.3.5  Select requirements gathering approach 
We discussed the source-driven and user driven requirement gathering 
approaches in detail in 5.2.5, “Select requirements gathering approach” on 
page 113. For this exercise, we have decided that the requirements gathering 
approach will be user-driven rather than source-driven. This is because there 
was no request to include all the source data, so we decided to involve the users 
in the decision since they best understand the business needs.

7.3.6  Gather the requirements 
In this activity we gather business requirements for the Sales Invoicing business 
process. We perform a series of interviews with top and middle management, 
and users involved in Sales Invoicing-related reporting activities. The objective is 
to inquire, collect, and document the different requirements for reporting and 
online data analysis purposes. 

In 5.2.6, “Requirements gathering” on page 116, there was a list of aspects to 
consider while interviewing the user. Here are more specific considerations to 
use when gathering requirements:

Procurement Enterprise 
data 
warehouse

Procurement Madrid DB2 Daily

Production ERP Production Madrid DB2 Real 
time

Note: The data owner is not the system owner. For example, the Sales order 
data available in the Data Warehouse is owned by the Sales order 
department, but the data warehouse system of record is owned by the IT 
department.

Business 
process

Data 
sources

Data owner Location Platform Data 
update

Note: The business users typically have clear ideas about what source data is 
required. So be careful if asked to integrate all data from all existing data 
sources. Though easy to ask, it may result in a much higher cost and larger 
effort than expected. Therefore, an accurate analysis of the data sources will 
minimize the potential for these issues.
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� Ask for existing reports and for information about queries or programs used to 
get the required data.

� Ask how often each report or query is run.

� For each requirement, ask about:

– Specific data needed
– Selection condition or filtering criteria to apply
– Consolidation or grouping needed

In Table 7-6, we show a sample list of the requirements collected during the user 
interviews. For intermediate filtering, we asked the user to prioritize the 
requirements by assigning one of these three categories: very critical, necessary, 
and nice-to-have. 

Nice-to-have requirements are excluded from this list. You might decide a 
different categorization, and cover all the requirements in the first design. The 
questions have been numbered using two different prefixes: Q for very specific 
requirements, and G for general requirements.

Table 7-6   User requirement table

Note: Questions formulated as follows: “Show me the total sales and total 
discounts per month” and “Show customers sorted by total sales for a given 
country” should be encouraged. This enables them to be quickly converted 
into SQL pseudo statements, such as “Select A where B grouped by C order 
by D” for query development.

Q# Sales Invoicing business process requirements

Q01 What is the gross profit of product sales grouped by beverage and customer 
category during a given month?

Q02 Debt analysis by customer: Print active and outstanding debts at a given date, 
by customer and grouped in ranges or bands of days. The user needs to have 
a report to list the sum of payments due in the next seven days per customer 
or per customer country. Also the user needs to report the total invoiced 
amount with payment due longer than 30 days. 

Q03 What is total amount of outstanding debts on a selected date by beverage and 
by category? And also by customer and invoice number?

Q04 What is the number of units sold and net sales amount per product for 
non-beverage items, per quarter?

Q05 What are the 10 most profitable beverages by: 

1. Largest total sales per year to date and region. 

2. Largest gross margin per year to date and region. 
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Q06 Who are my 10 most profitable customers per region by largest total sales 
volume per year? 

Q07 How is my net profit developing since the beginning of year? (Display profit 
during current year at the end of month, calculating monthly and accumulated 
profit per month.)

Q08 How many bottles (containers) and liters were delivered per time period in 
months compared to the previous three years during the same period?

Q09 List the total sale discount per beverage or product group or customer or 
customer category per time period compared to previous three years during 
the same period.

Q10 Organization credit history. For a selected month interval, list the outstanding 
payments at the end of each month grouped by customer and sorted by 
outstanding amount.

Q11 Report showing net revenue, gross sales, gross margin, and cost of sales per 
beverage and month, quarter and year.

Q12 Analysis of delayed invoicing due to partial shipments: Total amount grouped 
per warehouse, beverage, or beverage group for a selected period where the 
invoice date is a number of days greater than the first shipping date. 
Business reason: If the customer does not want partial invoicing, the order 
will be invoiced once it is fully shipped. Partial order deliveries will wait to be 
consolidated in a full order invoice. Orders may take long time to complete, 
from the time of the first partial shipment. It is necessary to analyze the impact 
of the indirect credits that the customer gets in this situation, and the increase 
in the sales performance if we improve the shipping process. The pertaining 
data needs to be analyzed only once per month. 

Q13 What is the sales order average value and sales order maximum value per 
month per Sales Representative?

Q14 What customers have placed orders greater than a given value during the last 
year?

Q15 What are the companies that last year exceeded their credit by more than 
20%?

Q16 List gross sales totals and total discounts by Sales Representative for the past 
year sorted by gross sales amount in descending order.

Q17 List the total discount amount, percentages, and gross margin per Sales 
Representative and customer sorted by gross margin in ascending order 
during last year.

Q# Sales Invoicing business process requirements
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Q18 List the number of orders per month containing one or more non-beverage 
items since the first year available.

Q19 Gross sales per Sales Representative, sales office, month, and currency 
selected by year.

Q20 Gross sales amount per each method of payment and country during last 
year.

Q21 Three top week days per month according to average sales by Web orders. 
The listing must include total gross sales and number of orders. 
Business reason: For planning system maintenance, is there a day (or days) 
of the week in which the number and orders increase or decrease? (sales 
office = WEB)

Q22 Number of orders and average sales order volume per transmission type (fax, 
telephone, Web) per month and year.

Q23 Revenue, gross margin, and cost of goods during last year per supplier sorted 
by revenue in descending order.

Q24 For tracking urgent customer orders specially ordered to the supplier, a report 
is needed listing: Supplier id, Supplier name, Contact name, Telephone 
number, Discount%, Web page and Web access code from the supplier.

Q25 Monthly report for accounts containing: Month, Customer id, Net sales, Duty, 
Cost of item handling, Cost of goods.

G01 All sales and cost figures for beverage reports must be available in both 
reporting currency and invoice currency.

G02 Beverages need to be summarized or added by product group.

G03 Allow tracking of average delivered alcohol liters, maximum and minimum 
alcohol content values per organization, Sales Representative and/or 
beverage group
Business reasons: Restructuring of the existing marketing product groups, 
and supporting resellers with the legal requirements regarding not selling 
beverages to the non-adult population.

G04 Gross sales, discount and bonus totals per year per corporation.

G05 Changes to beverage and sales organization structure and all corresponding 
attributes must be tracked across the time (history needed).

G06 Changes to customer attributes need to be fully maintained and stored.

Q# Sales Invoicing business process requirements
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7.3.7  Analyze the requirements
In this activity we analyze the Sales Invoicing business process requirements 
gathered in 7.3.6, “Gather the requirements” on page 362. In this section we do 
the following:

� Analyze each business question.

� Identify high level entities and also possible hierarchies associated with each 
of these entities.

� Identify high level measures.

The high level entities and measures identified here give us an idea about the 
kind of data with which we are dealing. It is highly possible that the entities 
identified here could become dimensions or facts in the future phases of the 
Dimensional Model Design Life Cycle.

Table 7-7 on page 367 shows the analyzed business requirements and the 
identified entities and measures.

Note: Points to review about the requirements

� Gross profit = Profit calculated as gross sales income less the cost of 
sales.

� Gross sales = Total invoiced amount minus total discount including 
returned and damaged items (in the requirements, Sales means Gross 
sales by default, unless otherwise indicated).

� Gross margin = Percentage difference between the cost of sales and the 
gross sales.

� Customer active debt = Amount invoiced to a customer and not yet due for 
payment.

� Customer outstanding debt = Amount invoiced and due for payment.

� Net sales = Gross sales minus returned and damaged items.

� Net profit = Net sales - Cost of sales - Duty amount - Cost of item handling 
(Item shipping charges).

� Cost of sales = Cost of the goods that have been sold, tax excluded. 
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Table 7-7   Identified entities and measures requirement table

Q# Sales Invoicing business process 
requirements

High level 
entities

Measures

Q01 What is the gross profit of product sales 
grouped by beverage and customer 
category during a given month?

Beverage, 
Organization, 
Time (Month), 
Organization 
Category

Gross Profit 
Amount

Q02 Debt analysis by customer: Print active 
and outstanding debts at a given date, by 
customer and grouped in ranges or bands 
of days. The user needs to have a report to 
list the sum of payments due in the next 
seven days per customer or per customer 
country. Also the user needs to report the 
total invoiced amount with payment due 
longer than 30 days. 

Organization, 
Time (Day), 
Country

Outstanding 
Debt (Net 
Sales Amount)

Q03 What is total amount of outstanding debts 
on a selected date by beverage and by 
category? And also by customer and 
invoice number?

Beverage 
group, 
Organization, 
Invoice, Time 
(Day)

Outstanding 
Debt (Net 
Sales Amount)

Q04 What is the number of units sold and net 
sales amount per product for 
non-beverage items, per quarter?

Beverage, 
Product group, 
Time (Quarter)

Net Sales 
Amount, 
Quantity Sold

Q05 What are the 10 most profitable beverages 
by: 

1. Largest total sales per year to date 
and region. 

2. Largest gross margin per year to date 
and region. 

Beverages, 
Time (Year to 
Date), Region

Gross Sales, 
Gross 
Margin%

Q06 Who are my 10 most profitable customers 
per region by largest total sales volume per 
year? 

Organization, 
Time (Year to 
Date), region

Gross Sales 
Amount

Q07 How is my net profit developing since the 
beginning of year? (Display profit during 
current year at the end of month, 
calculating monthly and accumulated profit 
per month)

Time (Year to 
Date), Time 
(Month)

Net Profit 
Amount
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Q08 How many bottles (containers) and liters 
were delivered per time period in months 
compared to the previous three years 
during the same period?

Time (Month) Quantity Sold, 
Liters 
Delivered

Q09 List the total sale discount per beverage or 
product group or customer or customer 
category per time period compared to 
previous three years during the same 
period.

Beverage, 
Product 
Group, 
Organization, 
Organization 
Category

Discount 
Amount

Q10 Organization credit history. For a selected 
month interval, list the outstanding 
payments at the end of each month 
grouped by customer and sorted by 
outstanding amount.

Time (month), 
Invoices, 
Organization

Net Sales 
Amount

Q11 Report showing Net revenue, Goss sales, 
Gross margin, and Cost of sales per 
beverage and month, quarter, and year.

Product 
Group, Time 
(Month), Time 
(Quarter), 
Time (Year)

Net Revenue 
Amount, Gross 
Sales Amount, 
Gross 
Margin%, Cost 
of Goods

Q12 Analysis of delayed invoicing due to partial 
shipments: Total amount grouped per 
warehouse, beverage, or beverage group 
for a selected period where the invoice 
date is a number of days greater than the 
first shipping date. 
Business reason: If the customer does 
not want partial invoicing, the order will be 
invoiced once it is fully shipped. Partial 
order deliveries will wait to be consolidated 
in a full order invoice. Orders may take a 
long time to complete, from the time of the 
first partial shipment. It is necessary to 
analyze the impact of the indirect credits 
that the customer gets in this situation, and 
the increase in the sales performance if we 
improve the shipping process. The 
pertaining data needs to be analyzed only 
once per month. 

Warehouse, 
Product group, 
Shipment, 
Invoices

Invoice 
Delayed 
Amount

Q# Sales Invoicing business process 
requirements

High level 
entities

Measures
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Q13 What is the sales order average value and 
sales order maximum value per month per 
Sales Representatives?

Time (Month), 
Employee

Gross Sales 
Amount

Q14 What customers have placed orders 
greater than a given value during the last 
year?

Organization, 
Time (Year)

Gross Sales 
Amount

Q15 What are the companies that last year 
exceeded their credit by more than 20%?

Organization, 
Time (Year)

Outstanding 
Debt

Q16 List gross sales totals and total discounts 
by Sales Representative for past year 
sorted by gross sales amount in 
descending order.

Employee, 
Time (Year)

Gross Sales 
Amount, 
Discount 
Amount

Q17 List the total discount amount, 
percentages and gross margin per Sales 
Representative and customer sorted by 
gross margin in ascending order during 
last year.

Employee, 
Organization, 
Time (Year)

Discount 
Amount, 
Discount 
Percentage, 
Gross 
Margin%

Q18 List the number of orders per month 
containing one or more non-beverage 
items since the first year available.

Time (month), 
Product Group

Number of 
orders

Q19 Gross sales per Sales Representative, 
sales office, month, and currency selected 
by year

Sales 
Representativ
e, Sales Office, 
Time (Month), 
Time (Year)

Gross Sales 
Amount

Q20 Gross Sales amount per each method of 
payment and country during last year.

 Payment 
Method, 
Country

Gross Sales 
Amount

Q21 Three top weekdays per month according 
to average sales by Web orders. The 
listing must include total gross sales and 
number of orders. 
Business reason: For planning system 
maintenance, is there a day (or days) of 
the week in which the number and orders 
increase or decrease? (Sales office = 
Web)

Time 
(Weekday), 
Sale Office, 

Gross Sales, 
Number of 
Orders

Q# Sales Invoicing business process 
requirements

High level 
entities

Measures
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Q22 Number of orders and average sales order 
volume per transmission type (fax, 
telephone, Web) per month and year.

Order 
transmission 
type, Time 
(year), time 
(month)

Number of 
orders

Q23 Revenue, gross margin, and cost of goods 
during last year per supplier sorted by 
revenue in descending order.

Organization 
(supplier), 
Time (Year)

Gross 
Margin%, Cost 
of Goods, 
Revenue

Q24 For tracking urgent Customer Orders 
specially ordered to the supplier, a report is 
needed listing: Supplier Id, Supplier name, 
Contact name, Telephone number, 
Discount%, Web Page and Web access 
code from the supplier.

Organization 
(Supplier)

NA

Q25 Monthly report for Accounts containing: 
Month, Customer id, Net Sales, Duty, Cost 
of Item handling, Cost of Goods.

Organization 
(customer), 
Time (Month), 

Net sales 
amount, Duty 
Amount, Cost 
of Item 
Handling, Cost 
of goods

G01 All sales and cost figures for beverage 
reports must be available in both reporting 
currency and invoice currency.

Currency, 
Product Group

All money 
amount 
measures 
requested in 
the other 
requirements

G02 Beverages need to be summarized or 
added by product group.

Beverage - 
Product group

All measures 
applicable to 
beverages

G03 Allow tracking of average delivered alcohol 
liters, maximum and minimum alcohol 
content values per Organization, Sales 
Representative and/or Beverage group
Business reasons: Restructuring of the 
existing marketing product groups, and 
supporting resellers with the legal 
requirements regarding not selling 
beverages to the non-adult population.

Organization, 
employee, 
product group

Alcohol 
Content% 
Spirit liters.

Q# Sales Invoicing business process 
requirements

High level 
entities

Measures
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High level entities and measures identified
Table 7-8 shows the high level entities (potential future dimensions), and any 
associated hierarchies with the measures identified in Table 7-7 on page 367.

Table 7-8   High level dimension identified

Table 7-9 on page 372 shows the high level measures identified from the 
requirements analyzed in Table 7-7 on page 367.

G04 Gross Sales, Discount and Bonus totals 
per year per corporation.

Organization 
(customer 
corporation)

Gross Sales 
Amount, 
Discount 
Amount, 
Bonus Amount 

G05 Changes to Beverage and Sales 
Organization structure and all 
corresponding attributes must be tracked 
across the time (history needed).

Beverages, 
Product group

N.A.

G06 Changes to customer attributes need to be 
fully maintained and stored.

Organization N.A.

Entities Hierarchy

Beverage Product Group  Beverage

Organization 
(Customer/Supplier)

Region  Country  City  Organization
Organization Category  Organization
Corporation  Organization  Division 

Time Year  - Quarter  Month  Day  Time
WeekDay  Day  Time

Employee Region  Country  City  Sales Office  Sales Employee

Warehouse Region  Country  City  Warehouse

Currency Country  Currency

Shipment -

Orders Order Transmission Type - Order

Invoices -

Q# Sales Invoicing business process 
requirements

High level 
entities

Measures
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Table 7-9   High level measures

7.3.8  Business process analysis summary
The final output of the Identify business process phase is the requirements 
gathering report. This requirements gathering report contains the following:

� Business process listing
� Business process prioritization
� High level entities and measures common between the business processes
� Business process identified for which dimension model will be built
� Data sources listing
� Requirement gathering for the business process
� Requirement gathering analysis
� High level entities and measures identified from the requirement analysis

Measures

Alcohol Content%
Cost of goods
Discount Amount
Discount Percentage
Gross Profit Amount
Gross Sales Amount
Gross Margin%
Gross Sales Amount
Invoice Delayed Amount
Liters Delivered
Net Profit Amount
Net Sales Amount
Net Revenue Amount
Number of orders
Outstanding Debt
Quantity Sold
Revenue Amount
Spirit liters
YTD Gross Sales
YTD Gross Margin
Duty Amount
Accrued bonus
Cost of item handling
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7.4  Identify the grain
In this phase we focus on the second step of the dimensional model design life 
cycle, which is Identify the grain, as shown in Figure 7-12.

Figure 7-12   Identify the grain

In 7.3, “Identify the requirements” on page 351, we identified the Sales Invoicing 
business process for which we will design the dimensional model. In this phase 
we will design the grain definition for the requirements we gathered for the Sales 
Invoicing process in 7.3.6, “Gather the requirements” on page 362. 

The primary goals of this phase are to:

� Define the fact table granularity.

� Identify existence of multiple grains within one business process.

� Identify type of fact table (Transaction, Periodic, or Accumulating).

� Study the feasibility to be able to provide lower grain for fact table than is 
requested. 

� Identify higher level dimensions and measures from the grain definition.
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� Produce the grain definition report which contains all the results and final 
output of this phase.

7.4.1  Identify fact table granularity
We have previously defined the sales process as the action of invoicing an order. 
The sales process was discussed in detail in 7.3.2, “Identify business process” 
on page 355. Therefore, in this case the natural candidate to look at when 
searching for the right granularity is the invoice form. An invoice consists of a 
header and one or many line items. A sample invoice form is shown in 
Figure 7-13. The invoice form does not show all associated attributes with the 
invoice. In this form we find the lowest grain for the fact table. 

The grain is identified as a single invoice line in the invoice form (highlighted in 
the example in Figure 7-13).

Figure 7-13   The grain of the sales fact table

Note: The grain you choose determines the level of detailed information that 
can be made available to the dimensional model.

1392.0
0Total: 

EUCurrency:

200.000%2010.00Soda 
Value Pack 2 x 0.75 

500.000%1005.00Bottle Water 
Pack 6 x 0.33l

152.005%1016.00Alcohol Bev-1 0.5l

100

50

10

10540.0010%5012.00Oak White-1 0.75l

4

3

2

1

Acquired
Bonus

Item 
Price

Disc 
%

Qty
Sold

Price/
UnitItem nameLine #

Discount Cust-1, Limited

SalesPerson-1

Customer:

Sales Rep:
01.10.2005Delivery date:

21.09.2005Order date:123678
Customer
Order Number:

01.10.2005Invoice Number: 10078902
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7.4.2  Identify multiple separate grains
The primary focus of this activity is to determine if there are multiple grains 
associated with the Sales Invoicing business process for which we are designing 
a dimensional model.

There will be times when more than one grain definition is associated with a 
single business process. In such a scenario, we recommend to design separate 
fact tables with separate grains rather than to forcefully try to put facts that belong 
to separate grains in a single fact table.

In short, this activity will allow us to decide if there are multiple grains associated 
with the sales process, and if we need to implement one or multiple fact tables. 

In order to decide whether to go for one or multiple fact tables, we suggested 
criteria in 5.3.2, “Multiple, separate grains” on page 125. Here are those criteria:

� One of the most important criteria that helps us determine the need for one or 
multiple fact tables are the facts. It is very important to understand the 
dimensionality of the facts to make the decision of whether the facts belong 
together in one fact table or in separate fact tables with different grains. For 
example, let us consider the sales business process. 

We have found two facts Outstanding Debt and Invoice Delayed Amount that 
belong to the sales process as a whole, but are not true at the grain definition 
at the line item level we have chosen. We will therefore exclude them now and 
leave them for a subsequent iteration. 

� Other criteria to consider is whether or not multiple OLTP source systems are 
involved. Generally if we are dealing with business processes such as order 
management, store inventory, or warehouse inventory, it is very likely that 
separate source systems are involved and hence the use of separate fact 
tables may be appropriate. However, in our Sales Invoicing business process, 
we have only one source of data and that is the enterprise data warehouse. 

� It is also important to find out if multiple business processes are involved. 
Multiple business processes involve the creation of multiple separate fact 
tables. And, it is possible that a single business process may involve creation 
of separate fact tables to handle facts that belong to different granularity. For 
our dimensional model, we have chosen only one business process and that 
is Sales Invoicing. 

Multiple granularity: Facts such as Number of Orders, Invoice Delayed 
Amount, and Outstanding Debt will be implemented in separate fact tables.
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� Another important criteria to consider are the dimensions. If you find that a 
certain dimension is not true to the grain definition, then this is a sign that it 
may belong to a new fact table with its own grain definition. 

Based on the assessment factors discussed above, we decide that there would 
be one fact table to handle the Sales Invoicing data. And, facts such as Number 
of Orders, Invoice Delayed Amount, and Outstanding Debt will be implemented 
in separate fact tables. 

Are multiple grain definitions identified?
Yes, there are multiple grain definitions identified for the Sales Invoicing process. 
And, they are:

� A single line item on the invoice form: In this chapter, we will be designing the 
dimensional model for this grain definition only. The other grain definitions 
defined below will be handled separately in different fact tables.

� Outstanding debt for each customer. 

� Single delayed invoice for a customer on an order.

Note: It is important to understand that had we chosen the sales process as a 
whole, we would have to design separate dimensional models for various 
subprocesses inside the sales process. In 7.2.8, “General business process 
description” on page 344, we discussed the various subprocesses inside the 
sales process, which were Sales Invoicing, Sales Orders, and Sales 
CRM/Marketing.

Note: It is extremely important not to merge facts or dimensions which are 
true at different grains into one fact table. Instead, a new dimensional model 
should be created with a new grain. 
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7.4.3  Identify fact table types
In this section we identify the types of fact tables. There are basically three types 
of fact tables, and they are:

� Transaction fact table: A table which records one row per transaction. A 
detailed discussion about the transaction fact table is available in “Transaction 
fact table” on page 231. 

� Periodic fact table: Stores one row for a group of transactions. In other words, 
a periodic fact table stores a single row for a number of transactions over a 
period of time. A detailed discussion about the periodic fact table is available 
in “Periodic fact table” on page 232.

� Accumulating fact table: Stores one row for the entire lifetime of an event. For 
example, the lifetime of a credit card application being sent, until the time it is 
accepted by the company. Another example is the lifetime of a job or college 
application being sent, until the time it is accepted or rejected by the job 
posting company or college. A detailed discussion about the accumulating 
fact table is available in “Accumulating fact table” on page 233.

We also recommend that you review 5.3.3, “Fact table types” on page 126 for 
more details.

We now know that the grain of our sales fact table is the invoice line. Invoices are 
generated once and they never get updated again. If changes are made, they 
have to be handled through credit notes.

Invoice lines are considered transactions, and one invoice line item will represent 
one row in the fact table. In other words, each single item on an invoice will form 
a part of the fact table. 

7.4.4  Check grain atomicity 
Regarding the Sales Invoicing process, we have already chosen the lowest grain 
possible, which is the invoice line. 

Both the dimension table and fact table have a grain associated with them. To 
understand the grain of a dimension table, we need to understand the attributes 
of the dimension table. Every dimension has one or more attributes. Each 
attribute associates a parent or child with other attributes. This parent-child 
relationship provides different levels of summarization. The lowest level of 

Fact table type: For the Sales Invoicing business process, we have identified 
three separate grains. However, for this case study, we will be working on the 
first grain definition which is a single item on an invoice. The fact table for this 
grain is a transaction fact table.
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summarization or the highest level of detail is referred as the grain. The 
granularity of the dimension affects the design such as the retrieval of data and 
data storage. 

7.4.5  Identify high level dimensions and facts 
In this activity, we identify high level preliminary dimensions and facts from 
whatever can be understood from the grain definition. No detailed analysis is 
carried out to identify these preliminary dimensions and facts. 

For our Sales Invoicing business process, we defined the grain (see 7.4.1, 
“Identify fact table granularity” on page 374) as a single line item on the invoice. 
An example of this is shown in Figure 7-14. 

Figure 7-14   Identifying high level dimensions and facts from the grain

From the invoice form shown on Figure 7-14, we have identified several facts and 
dimensions. Those preliminary facts and dimensions are listed in Table 7-10.

Table 7-10   Preliminary facts and dimensions

Grain adjustment: For our sales invoice grain definition, we have chosen the 
most detailed atomic grain as a single line item on the invoice. Lowering this 
grain definition is neither necessary nor possible.

Name Output

Preliminary facts Quantity, Price per Item, Discount%

Preliminary dimensions Invoice, Customer, Time, Beverage, 
Customer Representative, Currency

Time Customer
Customer 

Representative

Date CurrencyInvoice 
Number

Grain:
1 line  item on an invoice

Preliminary Facts are:
1) Price per item
2) Quantity
3) Discount%
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These preliminary high level dimensions and facts are helpful when we formally 
identify dimensions (see 7.5, “Identify the dimensions” on page 380) and facts 
(see 7.6, “Identify the facts” on page 409). The dimensions and facts get 
iteratively refined in each of the formal phases of the DMDL.

7.4.6  Grain definition summary
The output of the Identify the grain phase is the Grain Definition Report, which 
contains information such as that shown in Table 7-11.

Table 7-11   Main output of the Identify the grain phase 

Note: Preliminary facts are facts that can be easily identified by looking at the 
grain definition. For example, facts such as Price per Item, Quantity, and 
Discount% are easily identifiable by looking at the grain. However, detailed 
facts such as cost, manufacturing cost per line item, and transportation cost 
per item, are not preliminary facts that can identified by looking at the grain 
definition. Preliminary facts are not the final set of facts. Formal detailed fact 
identification occurs in the Identify the facts phase in 7.6, “Identify the facts” on 
page 409. The same is true for preliminary dimensions.

Name Output

Fact table granularity Invoice line

Are there multiple grains 
within one business process?

Yes, there are multiple grain definitions identified for 
the Sales Invoicing process. They are:

� A single line item on the invoice: In this chapter, 
we will be designing the dimensional model for 
this grain definition only. The other grain 
definitions will be handled separately in different 
fact tables. However, they are out of the scope of 
this chapter.

� Outstanding debt for each customer.

� Single delayed invoice for a customer on an 
order.

Type of fact table Transactional (Grain is a single line item on an 
invoice.)

Check grain atomicity
(Necessary to lower it?)

No

Preliminary facts Quantity, Price per Item, and Discount%

Preliminary dimensions Invoice, Customer, Time, Beverage, Customer 
Representative, and Currency
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7.5  Identify the dimensions
In this section, we focus on the Identify the dimensions phase of the dimensional 
model design life cycle, depicted in Figure 7-15. 

Figure 7-15   Dimensional Model Design Life Cycle

Table 7-12 shows the activities that are associated with the Identify the 
dimensions phase.

Table 7-12   Activities in the Identify the dimensions phase
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Facts
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Event Fact Tables

Identify Data 
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Requirements 
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Metadata Management
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Identify the Fact 
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(Transaction, 
Periodic, and 
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Dimensions FactsRequirements Grain 

Identify preliminary 
candidates for 
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Check Grain for  
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Seq
no.

Activity name Activity description

1 Identify dimensions Identifies the dimensions that are true to the 
identified grain.

2 Identify degenerate 
dimension

Identifies one or more degenerate dimensions.
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3 Identify conformed 
dimensions

Identifies any existing shared dimensions present in 
the data warehouse or other star schemas that may 
be used for designing the dimensional model. 

4 Identify dimensional 
attributes and 
dimensional 
hierarchies

Identifies the various dimension attributes for the 
dimension. It also identifies the balanced, 
unbalanced, or ragged hierarchies that may exist in 
the dimensions. Techniques are suggested to handle 
these hierarchies in the design. 

5 Identify date and time 
granularity

This activity identifies the date and time dimensions 
in the dimensional design. Typically it is these 
dimensions that have a major impact on the overall 
grain and size of the dimensional model. 

6 Identify slowly 
changing dimensions

Identifies the various slowly changing dimensions in 
the design. Also three major techniques (Type-1, 
Type-2, and Type-3) are described for handling 
slowly changing dimensions. 

7 Identify very fast 
changing dimensions

Identifies very fast changing dimensions and 
describes ways of handling such dimensions by 
creating one or more mini-dimensions. 

8 Identify cases for 
snowflaking

Identifies which dimensions need to be snowflaked. 

9 Other dimensional 
challenges are: 

 Description of other challenges:

 Identify 
Multi-valued 
Dimensions

Looks for multi-valued dimensions and describes 
ways of handling such dimensions in the design by 
using bridge tables. 

 Identify 
Role-playing 
Dimensions

Describes ways of looking for dimensions that can 
be implemented using the role-playing concept. 

 Identify 
Heterogeneous 
Dimensions

Describes ways of identifying heterogeneous 
products and implementing them in the design. 

 Identify Garbage 
Dimensions

Describes ways to look for low-cardinality fields and 
use them for making a garbage dimension. 

 Identify Hot 
Swappable 
Dimensions

Describes ways of creating profile-based tables or 
hot swappable dimensions to improve performance 
and secure data. 

Seq
no.

Activity name Activity description
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7.5.1  Identify dimensions
During this phase we identify the dimensions that are true to the grain selected in 
7.4, “Identify the grain” on page 373. We were able to identify preliminary 
dimensions and facts just by looking at the grain definition in 7.4.5, “Identify high 
level dimensions and facts” on page 378. However, there are typically several 
dimensions that are true to the grain but cannot be identified by looking at the 
grain definition. The same is true for facts. The goal of this phase is to formally 
identify all dimension tables that are true to the grain definition.

The dimensions identified for the grain definition (a single line item on an invoice) 
are shown in Table 7-13. 

Table 7-13   Dimensions list

Note: We have listed activities to consider when designing dimensions. The 
purpose is to make you aware of several design techniques available to use, 
depending on the particular situation. 

Identified 
dimension

Granularity of the dimension Source table

Invoice Identifies each invoice.
(Typically invoice numbers are treated as 
a degenerate dimension. We discussed 
this in 5.4.2, “Degenerate dimensions” 
on page 142. However, the Invoice 
number or invoice id is not treated as a 
degenerate dimension. We discuss this 
in 7.5.3, “Identify degenerate 
dimensions” on page 384.)

INVOICE

Customer Contains information about the 
customer. A customer for the Redbook 
Vineyard is an organization. 

CUSTOMER - 
CUSTOMER_DETAIL

Sales date Contains all dates on which the products 
were sold. The date should be stored at 
the day granularity.

DAY

Beverage 
(Product)

Contains all beverages. PRODUCT, 
PRODUCT_DETAIL

Sales 
Representative

Contains the information about the Sales 
Representatives. 

SALES_REP

Currency Contains the currency. CURRENCY
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The preliminary dimensional schema is shown in Figure 7-16. The dimension 
attributes are notated in the dimensional as TBD (To be Determined).

Figure 7-16   Preliminary Sales Invoicing star schema

Warehouse Consists of information for all 
warehouses that supply the products.

WAREHOUSE

Identified 
dimension

Granularity of the dimension Source table

*Preliminary Facts
(To be iteratively formalized 
in the ‘Identify Facts’ Phase)
 Chapter 7. Case Study: Dimensional model development 383



7.5.2  Check for existing conformed dimensions 
This step in our case study is relatively simple. This is the first dimensional model 
implemented in the Redbook Vineyard company, and therefore no other 
processes exist which could have shared conformed dimension that we might 
use for our dimensional model. For more details, see 5.4.3, “Conformed 
dimensions” on page 144.

7.5.3  Identify degenerate dimensions
After we have identified dimensions, the next step is to identify degenerate 
dimensions (dimensions without attributes). The term degenerate dimension is 
not actually a dimension, but is often a form of a transaction number, from the 
OLTP source system, that has been placed the fact table. Degenerate 
dimensions are discussed in more detail in:

� “Identify degenerate dimensions” on page 384 

� “Degenerate dimensions” on page 240

Coming back to our Sales Invoicing case study, we identified the dimensions in 
Table 7-13 on page 382. We discussed earlier that a transaction number, such as 
invoice number, is a degenerate dimension which is stored in the fact table as a 

Note: How to identify dimensions from an E/R model

As previously discussed, the source of a dimensional model can be either the 
enterprise data warehouse or the OLTP source systems. Both the data 
warehouse and the OLTP source systems may be based on an E/R model. 
That is, both may be in third normal form. So, once you learn to create a 
dimensional model from an E/R model, then you can create dimensional 
models either from the data warehouse or directly from the OLTP source 
systems.

The following are the steps involved in converting an E/R model into a 
dimensional model:

1: Identify the business process from the E/R model. 
2: Identify the many-to-many tables in E/R model to convert to fact tables.
3: Denormalize the remaining tables into flat dimension tables.
4: Identify the date and time from E/R model.

For more detail about this process, see 6.1, “Converting an E/R model to a 
dimensional model” on page 210. 
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number. However, in our case study, we observe that the invoice number is not a 
number, but has several attributes associated with it. Attributes are:

� Order Number associated with the invoice
� First delivery date
� Order opening date
� Invoice date (note that invoice date is different from sales date)
� And more

We discuss more such attributes associated with the Invoice number next. 

7.5.4  Identify dimensional attributes and hierarchies
In this activity we identify:

� Dimensional attributes for the dimensions identified in “Identify dimensions” 
on page 382

� Hierarchies, such as balanced, unbalanced, and ragged, associated with 
each of the dimensions

The purpose of this activity is to identify and define the attributes needed for each 
of the dimensions. These attributes are derived from the requirements collected 
in 7.3.6, “Gather the requirements” on page 362. More details are available in 
5.4.4, “Dimensional attributes and hierarchies” on page 145. In addition to the 
attributes, we also identify all possible associated hierarchies with each of these 
dimensions. 

In 7.5.1, “Identify dimensions” on page 382, we designed the preliminary star 
schema shown in Figure 7-16 on page 383. 

Now let us fill this preliminary star schema with detailed dimensional attributes for 
each dimension. But first, let us define the granularity of each dimension table as 
shown in Table 7-14.

Table 7-14   Dimensions list with granularity

Identified 
dimension

Granularity of the dimension

Invoice This dimension identifies each invoice and contains information 
such as order number and order date associated with a particular 
invoice number. 
(Typically invoice numbers are treated as a degenerate dimension. 
We discussed this in 5.4.2, “Degenerate dimensions” on page 142. 
However, in this case study, the Invoice number, or invoice id, is not 
treated as a degenerate dimension. We discuss this in 7.5.3, 
“Identify degenerate dimensions” on page 384.)
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The dimensions, along with their detailed attributes, are described in the 
following list:

� Invoice dimension: Contains information about the invoices for Customer 
Orders that have shipped. In other words, the granularity of the invoice 
dimension table is at single invoice header or invoice number. The invoice 
dimension is shown in Table 7-15.

Table 7-15   Invoice dimension’s attributes

Customer The customer dimension contains information about the customer. 
A customer for the Redbook Vineyard is an organization. 

Sales date The sales date dimension contains all dates on which the products 
were sold. The date should be stored at the day granularity.

Beverage 
(Product)

The beverage dimension contains all beverages.

Sales 
Representative

This dimension contains the information about the Sales 
Representatives. 

Currency The currency dimension contains the currency used.

Warehouse The warehouse dimension consists of information for all 
warehouses that supply the products.

Attribute Description

Invoice Key It is a surrogate key which is a system-generated integer number.

Invoice Id Identifier of the invoice.

Customer 
Order Id

The order reference number used by the customer to order the 
respective products. It will normally be a meaningless number such 
as KJS8374L.

First Delivery 
Date 

Deliver date. When there are partial deliveries, it is the date when the 
first shipment takes place.

End Buyer Id The company or person to whom the beverages are resold. This 
might be a company tax identifier or the name of a person. 

Invoice Date Date when the invoice is printed and sent to the customer. 

Order Date Date the order was opened. 

Order Key Surrogate key uniquely identifying an order dimension instance. 

Identified 
dimension

Granularity of the dimension
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� Customer dimension 

The customer dimension contains data about the organizations, normally 
resellers, to whom the company sells. It also describes the hierarchical structure 
of companies or corporations. In other words, the organizations which buy from 
the Redbook Vineyard company are its customers. The customer dimension is 
shown in Table 7-16. 

Table 7-16   Customer dimension’s attributes

Payment Due 
Date 

Date when the payment of the invoice is due. This date can be the 
same as when the last shipment of the order was or can be later. 

Payment 
Effective Date 

Date when the invoice was paid by the customer.

Payment 
Method 

The type of payment method, for example, credit card, cash, bank 
transfer, and check. 

Attribute Description

Customer 
Key

A surrogate key, which is a system-generated integer number. This 
number uniquely identifies each customer.

Name The name of the organization or the customer. For example, 
Composed Gupta and Gupta, Inc., or Ballard Halogen Lights, Inc. 

Acronym The acronym or short name by which the company is known, for 
example, CGGS for Composed Gupta and Gupta, Inc., or BHL for 
Ballard Halogen Lights, Inc. 

Allows 
Partial 
Shipment 

It specifies if partial shipment is allowed in case the order cannot be 
fully shipped at once. If the flag is true and one or more of the ordered 
products is in stock, then the order will be partially shipped.

City The city where the customer has its main address, for example, New 
Delhi or Prague. 

Comments Any comment pertinent and of value to the reporting about the 
customer that cannot go in any of the existing fields. 

Company 
Tax Id 

The identifier of the company used for tax purposes. This identifier is 
unique for every customer and can be used for identifying the customer 
across its history in the customer dimension table. 

Country The country of the customer. For example, United Kingdom or 
Australia. 

Attribute Description
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� Sales Date dimension: The date on which the product was ordered. This 
table could be progressively populated as new orders arrive, or we could also 
make a one time insertion with the all the date-month-year combinations for a 
particular time period. The granularity of the sales date dimension is a single 
day.

There are more details about the importance of choosing a correct granularity for 
the date dimension in 5.4.5, “Date and time granularity” on page 155. The sales 
date dimension attributes are shown in Table 7-17. 

Table 7-17   Sales date dimension attributes 

Delivery 
Method 

The preferred delivery method for the organization.

Financial 
Group 

The name of the internal financial group within the customer.

Marketing 
Category 

Marketing customer category. 

Parent 
Organization 
Key 

It maps to the surrogate key of the parent organization to which the 
customer belongs. This is used to store information about the 
hierarchical structures of corporations. For example, CorpHQ France 
mapping to the parent CorpHQ, which is the top parent company 
worldwide, or Buy and Drink Overseas Department, belonging to Buy 
and Drink, Inc. 

Region The region, as defined by the company marketing organization, where 
the customer country is located, for example, EMEA for Morocco, or 
SouthAmerica for Argentina, 

State The state, province, department, or canton, where the customer has 
their main address. For example, California in USA, Provence in 
France, or Valais in Switzerland. 

Type The type of the customer. For example, small, medium, or large.

Attribute Description

Sales Date Key Surrogate key uniquely identifying a Sales Date dimension 
instance. 

Day Date indicating an exact day, such as December 1, 2010.

Week Day Day of the week, such as Monday or Tuesday. 

Attribute Description
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For the case study on the Sales Invoicing business process, we discussed the 
sales date dimension in 7.5.6, “Date and time dimension and granularity” on 
page 399.

� Product dimension: Describes the products or beverages sold by the 
company. It currently only contains the drinkable products also commonly 
known as beverages. The product indicates what drink is contained in what 
type and size of container. For example, a soda in a one liter glass bottle, or in 
a 33cl. aluminum can. The company also sells other non-beverage products, 
such as T-Shirts and glasses, but they reside in a different sales fact table and 
are not covered in this process. 

The granularity initially requested in the case study was at the beverage level. 
For example, just specifying a brand of lemonade or a brand of soda. 
However, we should always try to go to the lowest level of available granularity 
to enable handling more demanding requirements that might exist in the 
future. The product granularity is a single product, which is defined as a 
particular beverage with a particular volume and a particular presentation 
form. The product dimension table attributes are defined in Table 7-18. 

Table 7-18   Product dimension attributes

Month Name of the month, such as January or February. 

Quarter The quarter of the year: 1, 2, 3, or 4. 

Year It indicates a year, such as 1994 or 2008. 

Attribute Description

Product Key Surrogate key, which is a system-generated integer.

Name The name of the product.

Acronym A short name, or initials, for a beverage, such as ATS for Amit Tasty 
Soda.

Beverage Identifies the beverage, such as Amit Tasty Soda or RedBook 
Lemonade. 

Beverage 
Group 

The group of drinks to which a beverage belongs, for example, Soft 
Drinks. 

Description An adequate description of the product with important characteristics 
that do not have a corresponding field in the product table. 

Attribute Description
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� Sales Representative Dimension

The Sales Representative dimension contains data about the company sales 
force. The Redbook Vineyard management is keenly interested in tracking the 
performance of their Sales Representatives. The granularity of the Sales 
Representative dimension is a single Sales Representative. The Sales 
Representative dimension attributes are shown in Table 7-19. 

Table 7-19   Sales Representative dimension attributes

Financial 
Group 

Which financial group includes this product.

Presentation The type of container used, such as a bottle or value-pack. 

Product Id The identifier of the product, commonly known to the users, or as 
generated in the source system. Normally a number or code such as 
SOD-40-L, not necessarily with any particular meaning. 

Status The status of the product, such as active or inactive.

Supplier The name of the supplier of the products, such as Soda Supplier-1. 

Units Per 
Package 

The number of units shipped in simple packages. 

Units Per 
Pallete 

The number of units of product that can be shipped per pallet or crate. 

Vat Code The VAT or Tax code applied to the product, such as 5%, or 20%. 

Attribute Description

Sales 
Representative 
Key

Surrogate key which is a system-generated integer. This number 
uniquely identifies each employee.

Name Employee name.

Comments Any additional comments required about the Sales 
Representative. 

Manager Name Name of the manager of the sales employee.

Employee Id A number or code identifying the employee. 

Sales Office Sales office where the customer representative works.

Attribute Description
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� Warehouse dimension: This dimension contains information about the 
warehouse from which the ordered products are shipped. The granularity of 
the warehouse is a single warehouse at a location. Of course, each single 
warehouse is actually structured in areas, rooms, and shelves. To better track 
which product came from which shelf of the warehouse, we could keep the 
grain of the warehouse dimension to shelf-location within a warehouse. 
However, this atomic level detail of information was not available in the 
original ERP system from where the data warehouse was populated. The 
warehouse dimension attributes are described in Table 7-20. 

Table 7-20   Warehouse dimension’s attributes

� Currency dimension: This dimension contains a list with the currencies used 
in local orders and invoices. It also identifies which is the currency used for 
reporting and consolidation purposes. The granularity of the currency 
dimension is a single currency. The currency dimension table attributes are 
described in Table 7-21. 

Table 7-21   Currency dimension’s attributes

City Sales office city location. 

Country Name of the country where the sales office is located. 

Attribute Description

Warehouse 
Key

Surrogate key which is a system-generated integer. This number 
uniquely identifies each warehouse.

Name Name of the warehouse.

Acronym A short name for the warehouse. 

City The name of the city where the warehouse is located. 

Country The country where the warehouse is located. 

Description Text describing additional features and characteristics, or special 
remarks. 

Attribute Description

Currency Key Surrogate key uniquely identifying a currency dimension instance. 

Currency 
Name 

The official currency name, such as Sterling Pound and Swiss 
Franc. 

Attribute Description
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The dimension schema we get after identifying the dimensions attributes is 
shown in Figure 7-17. 

Figure 7-17   Star schema after identifying dimension attributes

In the next activity, we further identify the hierarchies that each dimension has 
and also identify what attributes of the hierarchies.

Description The description of the currency. 

Is Corporate 
Currency? 

This flag indicates the currency used for consolidating financial 
statements corporate and worldwide. Only one currency can be the 
corporate currency, but it can change across the Sales Date. 

ISO Code The ISO code by which the currency is known. For example, USD 
for US dollars. 

Attribute Description

*Preliminary Facts
(Iteratively formalized in 
the ‘Identify Facts’ Phase)
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7.5.5  Identifying the hierarchies in the dimensions
A hierarchy is a cascaded series of many-to-one relationships. A hierarchy 
basically consists of different levels, with each level corresponding to a 
dimension attribute. 

In other words, a hierarchy is a specification of levels that represents 
relationships between different attributes within a hierarchy. For example, one 
possible hierarchy in the date dimension is Year  Quarter  Month  Day.

There are three major types of hierarchies, and they are described in Table 7-22.

Table 7-22   Different types of hierarchies

S.No Hierarchy 
name

Hierarchy description How is this hierarchy 
implemented?

1 Balanced A balanced hierarchy is a 
hierarchy in which all the 
dimension branches have the 
same number of levels. For 
more details, see “Balanced 
hierarchy” on page 249.

See “How to implement a 
balanced hierarchy” on 
page 250.

2 Unbalanced A hierarchy is unbalanced if it 
has dimension branches 
containing varying numbers of 
levels. Parent-child dimensions 
support unbalanced 
hierarchies. For more details, 
see “Unbalanced hierarchy” on 
page 251.

See “How to implement 
an unbalanced hierarchy” 
on page 252. 

3 Ragged A ragged dimension contains at 
least one member whose 
parent belongs to a hierarchy 
that is more than one level 
above the child. Ragged 
dimensions, therefore contain 
branches with varying depths. 
For more details, see “Ragged 
hierarchy” on page 260.

See “How to implement a 
ragged hierarchy in 
dimensions” on page 261.

Note: A dimension table may consist of multiple hierarchies, as well as 
attributes or columns that belong to one, more, or no hierarchies.
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For the Sales Invoicing example, Table 7-23 shows the various hierarchies 
present in the dimensions. 

Table 7-23   Dimensions and hierarchies

A detailed discussion about handling hierarchies is given in 6.3.4, “Handling 
dimension hierarchies” on page 248.

Unbalanced hierarchy
A hierarchy is unbalanced if it has dimension branches containing varying 
numbers of levels. Parent-child dimensions support unbalanced hierarchies. For 
example, the parent-child relationship present in the Customer dimension (see 
Figure 7-18 on page 395) supports an unbalanced hierarchy as shown in 
Figure 7-19 on page 396. 

Seq. 
no.

Dimension 
name

Hierarchy description Type of 
hierarchy

1 Sales Date  Year  Quarter  Month  Week Day Balanced

2 Invoice None

3 Product Financial Group  Beverage Group  
Beverage

Balanced

4 Sales 
Representative

Sales Rep Country  Sales Rep 
Region  Sales Rep Office

Balanced

5 Currency None

6 Customer Customer Country  Customer 
Region  Customer City

Balanced

7 Customer Customer has an unbalanced hierarchy. Unbalanced

8 Warehouse Warehouse Country  Warehouse 
Region  Warehouse City

Balanced

Note: Geographical objects, such as cities, countries, and regions, should 
always be considered as part of a Geography hierarchy.
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Figure 7-18   Recursive pointer to show parent-child relationship

It is important to understand that representing an arbitrary, unbalanced hierarchy 
is an inherently difficult task in a relational environment. A common example of 
an unbalanced hierarchy is one that represents the parent-child companies. A 
company at a given level may have several smaller companies below it, while 
others at the same level may have none or a few. If you wish to create a report 
which computes the sales totals for all companies at a given level (see levels in 
Figure 7-19 on page 396), you will find this question more efficiently answered 
with an OLAP (cube-based) reporting system than with a relational database.

However, if your hierarchies are symmetrical, then arguably either type of 
technology (OLAP Cubes or Relational database) is equally capable of providing 
the answer. For example, the date hierarchy is completely symmetrical. Each 
year has the same number of quarters, each quarter has the same number of 
months, and each month has same number of weeks in it.
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Figure 7-19   Unbalanced hierarchy represented by the Customer table

The customer dimension is an unbalanced hierarchy, as shown in Figure 7-19. 
It has levels with a consistent parent-child relationship, but that have logically 
inconsistent levels. The hierarchy branches also can have inconsistent depths. 
An unbalanced hierarchy can represent a parent-child company. 

Let us assume that we want a report which shows the total sales revenue at the 
node Customer Company 2. What this means is that we want the report to show 
the total sales made to Customer Company 2, Customer Company 4, Customer 
Company 5, Customer Company 7, and Customer Company 8. We cannot use 
SQL to answer this question because the GROUP BY function in SQL cannot be 
used to follow the recursive tree structure downward to summarize an additive 
fact such as sales revenue. Therefore, because of this problem, we cannot 
connect a recursive dimension (Figure 7-18 on page 395) to any fact table.

So, how do we solve the query using an SQL Group-by clause? And, how can 
we summarize the sales revenue at any node? 

The answer is to use a Bridge table between the Customer and SALES table as 
shown in Figure 7-20 on page 397. The aim of the bridge table is to help us 
traverse the unbalanced hierarchy. 

The customer table will have a hierarchy built in itself. For example, Customer A 
is a corporation that owns Customer B and C, and Customer D is a division of B. 
In our dimensional model, the Fact Gross Sales Amount for customer A will not 
include any of the sales amounts relative to B, C, or D. The same applies to 
every single child in the hierarchical tree.

Customer Company 1

Customer Company 2 Customer Company 3

Customer Company 4 Customer Company 5

Customer Company 7

Customer Company 6

Level 1

Level 2

Level 3

Level 4
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Figure 7-20   Organization bridge table for level navigation

There are two ways in which you can move through the unbalanced hierarchy 
shown in Figure 7-19 on page 396. 

� Descending the hierarchy: For this you need to make joins between 
Customer, Sales, and Organization_Hierarchy_Bridge as shown in 
Figure 7-20. We show one example of such a query in Example 7-1 on 
page 398.

� Ascending the hierarchy: For this you need to make joins between Customer, 
Sales, and Organization_Hierarchy_Bridge as shown in Figure 7-20.

The bridge table is called this because, when running queries and joining the 
facts table with the respective dimension, this new table will have to be placed in 
the middle of the other two tables and used as a bridge, as you can see in 
Figure 7-21 on page 398.

(1) Descending down the Hierarchy
- [Customer Key] Joins  [Parent 
Organization Key] BRIDGE

and
- FACT [Customer Key] Joins [Subsidiary 
Organization Key] BRIDGE

For traversing the Customer 
Hierarchy, join the following:

(2) Ascending up the Hierarchy
- [Customer Key] Joins  [Subsidiary 
Organization Key] BRIDGE

and
- FACT [Customer Key] Joins [Parent 
Organization Key] BRIDGE
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Figure 7-21   Graphical presentation of a bridge table

Figure 7-21 shows a graphical query where we calculate the total number of 
customer sales to the IBM corporation, including all its branches and owned 
companies, since the beginning of the data mart history.

And here is the SQL code produced by the tool used to design and run that 
query.

Example 7-1   SQL for traversing down the hierarchy

SELECT Sum(DWH_SALES.GROSS_SALES_AMOUNT) AS Sum_Of_GROSS_SALES_AMOUNT
FROM DWH_SALES INNER JOIN 

(DWH_CUSTOMER INNER JOIN
DWH_ORG_HIER_BRIDGE 
ON DWH_CUSTOMER.CUSTOMER_KEY=

DWH_ORG_HIER_BRIDGE.PARENT_ORGANIZATION_KEY) 
ON DWH_SALES.CUSTOMER_KEY = DWH_ORG_HIER_BRIDGE.SUBSIDIARY_ORGANIZATION_KEY

WHERE DWH_CUSTOMER.NAME Like "IBM*" AND DWH_ORG_HIER_BRIDGE.TOP_FLAG="Y";

For more detail about how to implement and traverse a parent-child hierarchy as 
shown in Figure 7-19 on page 396, refer to “How to implement an unbalanced 
hierarchy” on page 252.

The dimensional model we have developed to this point, after having identified 
the various hierarchies, is shown in Figure 7-22 on page 399.
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Figure 7-22   Dimensional model developed after identifying hierarchies

7.5.6  Date and time dimension and granularity
The date and time dimensions are considered the most important dimensions in 
dimensional modeling. The identification of the grain is crucial for the success of 
the dimensional database. For more details, see 5.4.5, “Date and time 
granularity” on page 155. The granularity specifically required for the Sales 
Invoicing dimensional model is a single day. Although a lower granularity would 
be possible, down to the timestamp level, the information in the data warehouse 
is at the date level, and a lower granularity is not considered to have any 
additional business value. However, if our data mart was for the ordering 
process, then a granularity at a timestamp level could have an additional 
business value for analysis, for example, for orders received through the Web.

The requirements for the sales invoice process can be fulfilled by the date 
dimension as shown in Table 7-24 on page 400.

Bridge Table is used to traverse
the Customer Unbalanced Hierarchy
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Table 7-24   Example of Sales Date table dimension

7.5.7  Handling slowly changing dimensions
The Redbook Vineyard stores full history for product, warehouse, customer, 
Sales Representative, invoice, and currency in the Enterprise Data Warehouse. 
Slow changing dimensions do not normally represent a problem, and we only 
need to decide what type of change management strategy we are going to use: 
Type-1, Type-2, or Type-3.

In the case study, the product, warehouse, Sales Representative, currency, and 
customer dimensions are slowly changing dimensions, but they have different 
requirements. The change handling strategies are listed in Table 7-25. 

Table 7-25   Slowly changing dimensions

7.5.8  Handling fast changing dimensions
In this section we identify the very fast changing dimensions that cannot be 
handled using the Type-1, Type-2, or Type-3 approaches discussed in 5.4.6, 
“Slowly changing dimensions” on page 159. 

Day Month Quarter Week day Year

3/10/2005 3 1 4 2005

3/11/2005 3 1 5 2005

3/12/2005 3 1 6 2005

3/13/2005 3 1 7 2005

Dimension Requirements Change handling 
strategy 

Product Keep the history on product structure and 
corresponding attributes.

Type-2

Warehouse No special requirement. Information can 
be overwritten.

Type-1

Sales 
representative

Keep the history on sales structure and 
corresponding attributes.

Type-2

Invoice The only changes to this dimension will be 
the population of some date fields. But 
once populated, the fields will not change.

Type-1

Sales date This dimension will not change. NA
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Fast changing dimensions are not so easy to handle, and normally require a 
different approach than the Type-1, Type-2, and Type-3 strategies. The 
information contained in fast changing dimensions is subject to change with a 
relatively high frequency. Table 7-26 shows the dimension identified as fast 
changing.

Table 7-26   Fast changing dimensions

An approach for handling very fast changing dimensions is to break off the fast 
changing attributes into one or more separate dimensions, also called 
mini-dimensions. The fact table would then have two foreign keys—one for the 
primary dimension table and another for the fast changing attributes. For more 
detailed discussion about handling fast changing dimensions, refer to 5.4.7, “Fast 
changing dimensions” on page 162. 

We identify the following fast changing attributes for the customer dimension 
shown in Figure 7-23:

� Days for Payment
� Credit
� Discount
� Bonus

Figure 7-23   Customer with detailed financial conditions

For the fast changing attributes, we create a mini-dimension called Payment 
Terms. The Payment Terms dimension is shown in Table 7-27 on page 402. In 

Dimension Requirements Type

Customer Keep the history for payment conditions, and 
credit and discount limits. 

Fast Changing 
Dimension

Fast Changing 
Dimension Attributes
 Chapter 7. Case Study: Dimensional model development 401



order to handle the fast growth, we create this mini-dimension with attributes 
which have a range of values. In other words, each of the attributes has a value 
in a particular band.

Table 7-27   Payment terms dimension table

Figure 7-24 on page 403 shows the new mini-dimension (Payment Terms) with 
the customer financial conditions and the updated customer dimension.

Attribute Description

Payment 
Terms Key 

Surrogate key uniquely identifying a payment term dimension 
instance. 

Credit Band The credit band groups different ranges of credit amounts allowed for 
the customer. For example: 
1 Low credit: Less than 1000; 
2 Medium credit: Between 1000_ and 4999;
3 High credit: Between 5000_ and 10000; 
4 Extra high credit: Greater than 10000. 

Days For 
Payment 
Band 

This band groups the different times or plans for invoice payments. 
For example, immediate: 1 - 30 days; more than 30 days. The 
customer can arrange a payment period in multiples of 15 days, or 
arrange for an immediate payment. In theory the customer could have 
to pay inmediately, in 15, 30, 45, or 60 days. 

Discount 
Band 

This describes the bands grouping the different discount ranges. For 
example, no discount; less than 10%; between 10% and 30%; more 
than 30%. 

Bonus Band This describes the bands grouping the different bonus ranges. For 
example: No bonus; less than 5%; between 5% and 10%; and more 
than 10%. 
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Figure 7-24   Mini-dimension for customer financial conditions

Each of the dimensions (Customer and Payment Terms) are joined separately to 
the Sales fact table. The dimensional model developed at this point (after 
identifying slowly and fast changing dimensions) is shown in Figure 7-25 on 
page 404.

Mini-Dimension with  each of its
attributes having a band-range 
of values
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Figure 7-25   Model after identifying fast and slowly changing dimensions

7.5.9  Identify cases for snowflaking
In this section we identify potential cases for snowflaking for all the dimension 
tables. Table 7-28 shows the snowflakes that we have identified and for what 
reasons.

Table 7-28   Snowflaking actions per dimension

Action Objects Reason

Snowflaking Supplier 
from 
products

There is a significant number of attributes which are 
strictly supplier dependent. In other words, the 
supplier has several attributes which are at a 
different grain than the overall product table. It is 
very likely that this table will be used as a dimension 
by the Procurement department with their future 
data mart, which will have a different fact table, but 
will share some conformed dimensions. The 
supplier dimension then would be shared with the 
procurement business process dimensional model.
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Refer to 6.3.7, “Identifying dimensions that need to be snowflaked” on page 277, 
for more topics on snowflaking, such as:

� When to snowflake
� When to avoid snowflaking
� When to snowflake to improve performance
� Disadvantages of snowflaking

Table 7-26 on page 401 depicts the dimensional model after we have identified 
the dimensions that will be snowflaked.

Figure 7-26   Model after identifying snowflake dimensions

7.5.10  Handling other dimensional challenges
In this section we identify special types of dimensions that may be applicable to 
the Sales Invoicing case study. The special dimensions that we identify are 
shown in Table 7-29 on page 406.
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Table 7-29   Other special dimensions to identify

Seq 
no.

Dimension type How is it implemented?

1 Multi-valued 
dimension

Description
Typically, while designing a dimensional model, each 
dimension attribute should take on a single value in the 
context of each measurement inside the fact table. 
However, there are situations where we need to attach a 
multi-valued dimension table to the fact table. In other 
words, there are situations where there may be more than 
one value of a dimension for each measurement. Such 
cases are handled using multi-valued dimensions. 

Implementation
Multi-valued dimensions are implemented using Bridge 
tables. For a detailed discussion, refer to 6.3.10, 
“Multi-valued dimensions” on page 288. 

Sales Invoicing case study
For the case study on Sales Invoicing, we do not have any 
scenarios with multi-valued dimension. This is primarily 
because each attribute in each of the dimensions takes on 
a single value for a particular fact table row.

2 Role-playing 
dimension

Description
A single dimension, which is expressed differently in a fact 
table using views, is called a role-playing dimension. A 
date dimension is typically implemented using the 
role-playing concept when designing a dimensional model 
using the accumulating snapshot fact table. This is 
discussed in more detail in “Accumulating fact table” on 
page 233. 

Implementation
The Role-Playing dimensions are implemented using 
views. This procedure is explained in detail in 6.3.9, 
“Role-playing dimensions” on page 285. 

Sales Invoicing case study
For the case study on Sales Invoicing, we do not have any 
scenarios for dimensions that can be implemented using 
role-playing.
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3 Heterogeneous 
dimension

Description
Heterogeneous products can have different attributes, so it 
is not possible to make a single product table. Let us 
assume that an insurance company sells different kinds of 
insurance, such as Car Insurance, Home Insurance, Flood 
Insurance, and Life Insurance. Each type of insurance can 
be treated as a product. However, we cannot create a 
Single Product table to handle all these types of insurance 
because each has extremely unique attributes. 

Implementation
Here are ways to implement heterogeneous dimensions:

� Merge all the attributes into a single product table and 
all facts relating to the heterogeneous attributes in one 
fact table.

� Create separate dimensions and fact tables for the 
heterogeneous products.

� Create a generic design to include a single Fact and 
Single Product Dimension table with common 
attributes from two or more heterogeneous products.

The above mentioned concepts of implementing 
heterogeneous dimensions are discussed in more detail in 
6.3.12, “Heterogeneous products” on page 292.

Sales Invoicing case study
The Sales Invoicing case study has two dimension groups, 
beverages and non-beverages, that do not share all the 
data in the Product dimension. For example, the fact table 
contains measures only applicable to the beverages (such 
as alcohol content volume and delivered liters). And, the 
two main groups of products have specific attributes that 
are applicable to one but not the other. We therefore 
conclude that the product is a heterogeneous dimension. 

However, we decided to leave both subtype attributes and 
measures in the same dimension and facts table. Any 
specific attributes since they are not needed by the 
business. Product is a heterogeneous dimension but will 
be left unchanged. 

Seq 
no.

Dimension type How is it implemented?
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4 Garbage 
dimension

Description
A dimension that consists of low-cardinality columns, such 
as codes, indicators, status, and flags, also referred to as 
a junk dimension. The attributes in a garbage dimension 
are not related to any hierarchy. 

Implementation
Implementation involves separating the low-cardinality 
attributes and creating a dimension for such attributes. 
This implementation procedure is discussed in detail in 
6.3.8, “Identifying garbage dimensions” on page 282. 

Sales Invoicing case study
For the case study, we do not have any situations involving 
a garbage dimension. 

5 Hot swappable 
dimension 

Description
A dimension that has multiple alternate versions of itself, 
and can be swapped at query time, is called a hot 
swappable dimension or profile table. Each of the versions 
of the hot swappable dimension can be of a different 
structure. The alternate versions access the same fact 
table, but have different output. The versions of the 
primary dimension may be completely different, including 
incompatible attribute names and different hierarchies. 

Implementation
The procedure to implement hot swappable dimensions is 
discussed in detail in 6.3.13, “Hot swappable dimensions 
or profile tables” on page 294.

Sales Invoicing case study
For the case study about Sales Invoicing, we do not create 
hot swappable dimensions. However, we could if we 
decide to implement tighter security, or for performance 
reasons.

Seq 
no.

Dimension type How is it implemented?
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7.5.11  Dimensional model containing final dimensions
Figure 7-27 shows the dimension model up to the point of having completed the 
Identify dimensions phase of the DMDL.

Figure 7-27   Model after “identify dimensions” phase

7.6  Identify the facts
In the “Identify the facts” phase, shown in Figure 7-28 on page 410, the primary 
goal is to provide more detail on the fact table. 
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Figure 7-28   Dimensional Model Design Life Cycle

We have identified preliminary dimensions and preliminary facts, for the sales 
invoice business process, using the grain definition shown in Figure 7-29. In this 
phase we will iteratively and in more detail, identify additional facts that are true 
to this grain. 

Figure 7-29   Grain definition for sales invoice business
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Table 7-30 on page 411 shows the activities associated with the Identify the facts 
phase.

Table 7-30   Activities in the Identify the Facts phase

We now discuss each of the activities listed in Table 7-30. 

S
no.

Activity name Activity description

1 Identify facts Identifies the facts that are true to the grain identified 
for our Sales Invoicing process. The grain was 
identified in 7.4, “Identify the grain” on page 373. 

2 Identify conformed facts Identify any conformed facts. That is, in this activity 
we identify if any of these facts have been conformed 
and shared across the organization. If yes, we use 
those conformed facts.

3 Identify fact types Identify the fact types, such as:
- Additive 
- Semi-additive 
- Non-additive 
- Derived 
- Textual 
- Pseudo 
- Factless 

4 Year-to-date facts Year-to-date facts are numeric totals that consist of 
aggregated totals from start of year until the current 
date. In this activity we discuss year-to-date facts to 
make sure such facts are not included in a fact table 
which includes data at the atomic line item level. 

5 Event fact tables In this activity we describe how to handle events in 
the event-based fact table, and highlight the pseudo 
and factless facts that may be associated with such 
tables.

6 Composite key design General guidelines for designing the primary 
composite key of the fact table. We also describe 
situations when a degenerate dimension may be 
included inside the fact table composite primary key.

7 Fact table sizing and 
growth

In this activity we describe guidelines to use to predict 
fact table growth. 
 Chapter 7. Case Study: Dimensional model development 411



7.6.1  Identify facts 
Identifying and documenting the fact types is important for the applications and 
users of the dimensional model. There are several facts, other than the 
preliminary facts, that cannot be known by glancing at the grain definition. Such 
facts are detailed and derived facts that need further analysis to be found. 

In this activity we identify all the facts that are true to the grain. These facts 
include the following:

� The preliminary facts identified in “Identify high level dimensions and facts” on 
page 378. Preliminary facts are easily identified just by looking at the grain 
definition or the invoice. 

� Detailed facts, such as cost per individual product, labor manufacturing cost 
per product, or transportation cost per individual product. These facts can 
only be identified after a detailed analysis of the source E/R model to identify 
all the facts that are true at the line item grain.

The sales fact table contains information about the customers that ordered the 
products, the products ordered, the date on which the product is ordered, the 
warehouse from which the products are shipped, the payment terms applied to 
the ordered item, and the currency in which the ordered item is invoiced. 

Table 7-31 shows the facts identified for the Sales Invoicing business process 
that are true to the line item grain definition (see Figure 7-29 on page 410).

Table 7-31   Sales fact table

# Fact Description

1 Accrued 
Bonus Amount 

An amount of money in the corporate currency indicating the 
bonus the customer gets for purchasing a product. Accrued 
Bonus Amount= Quantity sold X Accrued Bonus per Item.

2 Alcohol Duty 
Amount 

The amount in corporate currency to be paid for duty if the 
product is an alcoholic drink. [Alcohol Duty Amount= Quantity 
sold X Alcohol Duty per Item]. 

3 Alcohol 
Volume 
Percent 

Alcohol by volume (ABV) is an indication of how much alcohol 
(expressed as a percentage) is included in an alcoholic 
beverage. This measurement is assumed to be a world 
standard, although in the United States, the predominant 
measurement is Alcohol by weight (also known as ABW). 
Another way of specifying the amount of alcohol is alcoholic 
proof. 

4 Cost Of Goods Also known as cost of product in corporate currency 
excluding the taxes.
[Cost of Goods = Quantity sold x Cost of good per item].
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5 Delivered 
Liters 

Amount of liters shipped with a product. 
[Delivered Liters = Quantity sold x Delivered Liters per Item].

6 Quantity Sold The quantity of the product that has been already sold. 
Note: This was a preliminary fact we identified in 7.4.5, 
“Identify high level dimensions and facts” on page 378. 

7 Discount 
Amount 

The amount of money, in corporate currency, the customer 
gets as a discount. 
Note: This was a preliminary fact we identified in 7.4.5, 
“Identify high level dimensions and facts” on page 378. 
[Discount Amount = Quantity sold x Discount Amount per 
item]. 

8 Gross Sales 
Amount 

The amount of money in corporate currency already invoiced. 
Note: We identified Price per item as preliminary fact in 
7.4.5, “Identify high level dimensions and facts” on page 378. 
Instead of storing ‘Price per item’ as a fact, we store the 
Gross sales cost for the line item as Quantity sold x Price per 
item.
[Gross Sales Amount = Quantity sold x Price per item].

9 Lc Bonus 
Amount 

The amount of money, in the ordered local currency, 
indicating the bonus the customer gets for purchasing the 
product. [Local Bonus Amount = Quantity sold x Bonus 
Amount per item].

10 Lc Cost Of 
Goods 

The net amount of money in the ordered local currency the 
product costs. [Cost of Goods = Quantity sold x Cost of good 
per item]. 

11 Lc Discount 
Amount 

The amount of money in the ordered currency the customer 
gets discounted on the product. [Discount Amount = Quantity 
sold x Discount Amount per item].

12 Lc Duty 
Amount 

The amount in ordered local currency to be paid for duty if the 
product is an alcoholic drink. [Alcohol Duty Amount = 
Quantity sold X Alcohol Duty per Item].

13 Lc Gross Sales 
Amount 

The amount of money in ordered local currency already 
invoiced for this product. [Gross Sales Amount = Quantity 
sold x Price per item]. 

14 Lc Order 
Handling Cost 

The amount of money in the order currency for order 
handling. This information is not kept at the order level 
because certain kinds of liquors are very expensive luxury 
articles that need to be treated very carefully and be specially 
packaged. [Order Handling Cost = Quantity sold x Order 
Handling Cost per Item].

# Fact Description
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How to identify facts or fact tables from an E/R model
The following are the steps to convert an E/R model into a dimensional model:

1. Identify the business process from the E/R Model.
2. Identify many-to-many tables in E/R model to convert to fact tables. 
3. Denormalize remaining tables into flat dimension tables.
4. Identify date and time from E/R model.

Because of the huge E/R model of the Redbook Vineyard company data 
warehouse, we do not cover all the steps in detail. For more step-by-step details 
about how to determine fact tables and facts in the E/R model, refer to 6.1, 
“Converting an E/R model to a dimensional model” on page 210.

7.6.2  Conformed facts
For the Sales Invoicing case study, we do not have any conformed facts.

7.6.3  Identify fact types (additivity and derived types)
In this activity we categorize facts based on the way they can be added. This 
categorization is especially useful in order to avoid mistakes when adding up 
columns of data that cannot be absolutely or partially summed. 

15 Order 
Handling Cost 

The amount of money in the corporate currency for order 
handling. This information is not kept at the order level 
because certain kinds of liquors are very expensive luxury 
articles that need to be treated very carefully and be specially 
packaged. [Order Handling Cost = Quantity sold x Order 
Handling Cost per Item].

16 Spirit Liters Amount of alcohol in liters per item = 
Delivered Liters * (Alcohol Volume Pct / 100).

17 Gross profit Profit calculated as gross sales income less the cost of sales.

18 Gross margin 
Percent

Percentage difference between the cost of sales and the 
gross sales.

19 Net sales 
Amount

The amount of the sale. This is a negative amount, if it is a 
credit note, due to returned or damaged material.

20 Net profit 
Amount

Net Sales - Cost of Sales - Alcohol Duty Amount

# Fact Description
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The important factors we consider when aggregating data by column are: 
additivity, semi-additivity, and non-additivity. For a detailed definition of fact types, 
refer to 5.5.1, “Facts” on page 171.

In Table 7-32 we describe all the facts by:

� Categorizing them as additive, non-additive, or semi-additive. Handling 
semi-additive and non-additive facts is considered to be an advanced 
concept. For more on handling such facts, refer to the following:

– “Non-additive facts” on page 297
– “Semi-additive facts” on page 299

� Identifying them as derived, when they can be calculated from other facts that 
exist in the table, or that have been also derived.

Table 7-32   Facts identified for Sales fact table

S# Fact Description Type of fact Derived

1 Accrued 
Bonus 
Amount 

An amount of money in the 
corporate currency indicating 
the bonus the customer gets 
for purchasing a product. This 
fact is true to the line item 
grain. [Accrued Bonus Amount 
= Quantity sold x Accrued 
Bonus per Item]

Additive No
[It would have 
been a derived 
fact if Accrued 
Bonus per Item 
had also been 
stored in the 
fact table].

2 Alcohol 
Duty 
Amount 

The amount in corporate 
currency to be paid for duty if 
the product is an alcoholic 
drink. This fact is true to the 
grain. [Alcohol Duty Amount= 
Quantity sold x Alcohol Duty 
per Item] 

Additive No
[It would have 
been a derived 
fact if [Alcohol 
Duty per Item] 
had also been 
stored in the 
fact table].

3 Alcohol 
Volume 
Percent 

Alcohol by volume (ABV) is an 
indication of how much alcohol 
(expressed as a percentage) is 
included in an alcoholic 
beverage. This measurement 
is assumed as a world 
standard, although in the 
United States, the 
predominant measurement is 
Alcohol by weight (also known 
as ABW). Another way of 
specifying the amount of 
alcohol is alcoholic proof. 

Non-additive No
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4 Cost Of 
Goods 

Also known as cost of product 
in corporate currency 
excluding the taxes.
[Cost of Goods = Quantity sold 
x Cost of good per item]

Additive No
[It would have 
been a derived 
fact if [Cost of 
good per item] 
had also been 
stored in the 
fact table].

5 Delivered 
Liters 

Amount of liters shipped for a 
product. 
[Delivered Liters = Quantity 
sold x Delivered Liters per 
Item]

Additive No
[It would have 
been a derived 
fact if delivered 
liters per item 
had also been 
stored in the 
fact table].

6 Quantity 
Sold

The quantity of product in units 
that has been already sold. 
Note: This was a preliminary 
fact we identified in 7.4.5, 
“Identify high level dimensions 
and facts” on page 378. 

Additive No

7 Discount 
Amount 

The amount of money in 
corporate currency the 
customer gets discounted on 
the product. 
Note: This was a preliminary 
fact we identified in 7.4.5, 
“Identify high level dimensions 
and facts” on page 378. 
[Discount Amount = Quantity 
sold x Discount Amount per 
item] 

Additive No.
It would have 
been a derived 
fact if [Discount 
Amount per 
item per item] 
had also been 
stored in the 
fact table.

S# Fact Description Type of fact Derived
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8 Gross 
Sales 
Amount 

The amount of money in 
corporate currency already 
invoiced. 
Note: We identified Price per 
item as preliminary fact in 
7.4.5, “Identify high level 
dimensions and facts” on 
page 378. Instead of storing 
‘Price per item’ as a fact, we 
store the Gross sales cost for 
the line item as Quantity sold x 
Price per item. [Gross Sales 
Amount = Quantity sold x Price 
per item]

Additive No
[It would have 
been a derived 
fact if Price per 
item had also 
been stored in 
the fact table].

9 Lc Bonus 
Amount 

The amount of money in the 
ordered local currency 
indicating the bonus the 
customer gets for purchasing 
the product.
[Local Bonus Amount = 
Quantity sold x Bonus Amount 
per item]

Semi-additive
(You cannot 
add different 
currencies.)

No
[It would have 
been a derived 
fact if Bonus 
Amount per 
item had also 
been stored in 
the fact table].

10 Lc Cost 
Of Goods 

The net amount of money in 
the ordered local currency the 
product costs. 
[Cost of Goods = Quantity sold 
x Cost of good per item] 

Semi-additive
(You cannot 
add different 
currencies)

No
[It would have 
been a derived 
fact if Cost of 
good per item 
had also been 
stored in the 
fact table].

11 Lc 
Discount 
Amount 

The amount of money in the 
ordered currency the customer 
gets as a discount on the 
product. 
[Discount Amount = Quantity 
sold x Discount Amount per 
item]

Semi-additive
(You cannot 
add different 
currencies)

No
[It would have 
been a derived 
fact if Discount 
amount per 
item had also 
been stored in 
the fact table].

S# Fact Description Type of fact Derived
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12 Lc Duty 
Amount 

The amount in ordered local 
currency to be paid for duty if 
the product is an alcoholic 
drink. 
[Alcohol Duty Amount = 
Quantity sold x Alcohol Duty 
per Item] 

Semi-additive
(You cannot 
add different 
currencies)

No
[It would have 
been a derived 
fact if Alcohol 
duty per item 
had also been 
stored in the 
fact table].

13 Lc Gross 
Sales 
Amount 

The amount of money in 
ordered local currency already 
invoiced for this product.
Gross Sales Amount = 
Quantity sold x Price per item. 

Semi-additive
(You cannot 
add different 
currencies)

No
[It would have 
been a derived 
fact if Price per 
item had also 
been stored in 
the fact table].

14 Lc Order 
Handling 
Cost 

The amount of money in the 
order currency that the order 
handling of the product costs. 
This information is not kept at 
the order level because certain 
kinds of liquors are very 
expensive luxury articles that 
need to be treated very 
carefully and be specially 
packaged. 
[Order Handling Cost = 
Quantity sold x Order Handling 
Cost per Item]

Semi-additive
(You cannot 
add different 
currencies)

No
[It would have 
been a derived 
fact if Order 
handling cost 
per item had 
also been 
stored in the 
fact table].

15 Order 
Handling 
Cost 

The amount of money in the 
corporate currency that the 
order handling of the product 
costs. This information is not 
kept at the order level because 
certain kinds of liquors are 
very expensive luxury articles 
that need to be treated very 
carefully and be specially 
packaged. 
[Order Handling Cost = 
Quantity sold x Order Handling 
Cost per Item]
(in Corporate currency)

Additive No
It would have 
been a derived 
fact if Order 
handling cost 
per item had 
also been 
stored in the 
fact table.

S# Fact Description Type of fact Derived
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16 Spirit 
Liters 

Amount of alcohol in liters per 
item = 
Delivered Liters * (Alcohol 
Volume Pct / 100)

Additive Yes
(See 
description for 
formula)

17 Gross 
profit

Profit calculated as gross 
sales income less the cost of 
sales.

Additive Yes
(See 
description for 
formula)

18 Gross 
margin 
Percent

Percentage difference 
between the cost of sales and 
the gross sales.

Non-additive Yes
(See 
description for 
formula)

19 Net sales 
Amount

The amount of the sale. This is 
a negative amount if it is a 
credit note due to returned or 
damaged material.
Net sales = Gross Sales minus 
Amount returned and 
damaged items. 7.3.6, “Gather 
the requirements” on 
page 362.
When the invoice is created for 
a customer, the <Amount 
returned and damaged items> 
is 0. However, if the customer 
returns goods which are 
damaged, a new invoice form 
is created and sent to the 
customer with <Amount 
returned and damaged items> 
showing a negative Amount.

Additive Yes
(See 
description for 
formula)

20 Net profit 
Amount

Net Sales - Cost of Sales - 
Alcohol Duty Amount
(in Corporate currency)

Additive Yes
(See 
description for 
formula)

Note: A fact is said to be derived if the fact can be calculated from other facts 
that exist in the table, or that have also been derived. You may decide not to 
include the derived facts inside the fact table and to calculate them inside the 
front-end reporting application.

S# Fact Description Type of fact Derived
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7.6.4  Year-to-date facts
We have identified two year-to-date facts: Gross Sales YTD and Gross Margin 
YTD. These YTD facts are shown in Table 7-33. 

Table 7-33   Year-to-Date Facts

However these year to date facts are not true to this grain. Our two year-to-date 
facts will not be physically implemented and will be handled out of the 
dimensional model by means of one of the following of:

� An OLAP application 
� RDMS user-defined functions
� An RDMS view
� A user SQL query

For more information about Year-to-Date facts, refer to 5.5.4, “Year-to-date facts” 
on page 176.

7.6.5  Event facts, composite keys, and growth
For our Sales Invoicing case study, we do not have any event-based fact tables. 
For more information about event-based fact tables, refer to 6.4.4, “Handling 
event-based fact tables” on page 311. 

The composite key of the sales fact table consists of the following list of keys, all 
of which are surrogate keys. 

� Currency
� Customer
� Invoice
� Payment Terms
� Product
� Sales Date
� Sales Representative
� Warehouse

In this activity, we estimate the fact table size and also predict its growth. It is 
important to understand that approximately 85-95% of the space of a 
dimensional model is occupied by the fact tables. Therefore, it is extremely 
important to understand the future growth pattern to plan for future fact table 

S.No Name of Year-to Date Fact Description

1 Gross Sales YTD Gross Sales during the present year

2 Gross Margin YTD Gross Margin Average during the 
present year
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performance. For more information about how to predict fact table growth, refer 
to 5.5.7, “Fact table sizing and growth” on page 179. 

7.6.6  Phase Summary
We now have the definitive version of the logical dimensional model. The final 
dimensional model is shown in Figure 7-30.

Figure 7-30   Final model for Sales Invoicing business process

7.7  Other phases
We developed a dimensional model for the Sales Invoicing business process, in 
this case study. We discussed the following phases of the DMDL:

� Identify the business process
� Identify the grain
� Identify the dimensions
� Identify the facts
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We now briefly describe how to apply the other phases of the DMDL for the Sales 
Invoicing case study. The other phases of the DMDL we consider are:

� Verify the model: Here we verify the dimensional model (Figure 7-30 on 
page 421) we made for our sales invoice process. We verify whether the 
dimensional model designed is able to answer the business requirements 
identified during the requirements gathering phase in “Gather the 
requirements” on page 362. For more information about the ‘Verify’ phase, 
refer to “Verify the model” on page 181. 

� Physical Design Considerations: In this phase we do the following:

– Identify Aggregates: In simple terms, aggregation is the process of 
calculating summary data from detail base level fact table records. 
Aggregates are the most powerful tool for increasing query processing 
performance in dimensional data marts. The main goal of this phase is to 
identify the aggregates that will help improve performance. For more 
information about creating aggregates, refer to “Aggregations” on 
page 184.

– Aggregate Navigation: This is a technique that involves redirecting user 
SQL queries to appropriate precomputed aggregates. In this phase we 
design intelligent aggregate navigation strategies. For more information 
about this advanced topic, refer to “Aggregate navigation” on page 188.

– Indexing: In this phase we create indexes for the dimensions and fact 
table. For more information about creating indexes, refer to:

• “Indexing” on page 190 provides guidelines about creating indexes.

• “Indexing for dimension and fact tables” on page 324 (A sample star 
schema to show indexing).

– Partitions: Partitioning a table divides the table by row, by column, or both. 
If a table is divided by column, it is said to be vertically partitioned. If a 
table is divided by rows, it is said to be horizontally partitioned. Partitioning 
large fact tables improves performance because each partition is more 
manageable and smaller to enable better performance. In this phase we 
create partitions. For more guidelines about creating partitions, refer to 
“Partitioning” on page 195.

� Meta Data management: In this phase we manage meta data for the 
following phases of the DMDL:

– Identify business process: The output of this phase results in the 
Requirements gathering report. The report primarily consists of the 
business requirements for the selected business for which you will design 
the dimensional model. In addition, the report also consists of the 
business processes, owners, source systems involved, data quality 
issues, common terms used across business processes, and other 
business-related meta data.
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– Identify the grain: The output of this phase results in the Grain definition 
report (See DMDL Figure 7-28 on page 410). The Grain definition report 
consists of one or multiple definitions of the grain for the business process 
for which the dimensional model is being designed. Also, the type of fact 
table (transaction, periodic, or accumulating) being used is mentioned. 
The Grain definition report also includes high level preliminary dimensions 
and facts.

– Identify the dimensions: The meta data for this phase includes the 
dimension name, its hierarchies, update rules, load frequency, load 
statistics, usage statistics, archive rules, archive statistics, purge rules, 
purge statistics, attributes, and so on. For more detail, refer to “Meta data 
management” on page 196.

– Identify the facts: The meta data for this phase includes detailed 
information about the facts. For more detail, refer to “Meta data 
management” on page 196.

– User Verification phase: This phase includes meta data gathered after the 
user verification of the dimensional model.

– Physical design consideration: The meta data for this phase includes 
aggregate tables involved, aggregate navigation strategy, index names, 
index descriptions, and partitions involved.

� Design the next priority business process data mart: In this activity, we 
designed the dimensional model for the Sales Invoicing business process of 
the Redbook Vineyard company. However, the Redbook Vineyard company 
has several business processes that we identified and prioritized in the 
“Identify business process” on page 355. The various business processes are 
shown in Table 7-34. We identified the Sales Invoicing as the process with the 
highest priority for which the dimensional model should be designed. 

The next step is to select the next high priority business process and use the 
DMDL to design another mart. Most likely, management will agree on either 
Inventory or Sales Orders. This is because these have the highest points as 
shown in Table 7-34. For more information on prioritizing business processes, 
refer to 7.3.2, “Identify business process” on page 355.

Table 7-34   Business process prioritization

Name of 
Business 
Process

Complexity Data quality 
and 
Availability 

System 
availability 

Strategic 
business 
significance

Final Points

Distribution 6 6 1 2 15

Sales CRM/ 
Marketing

4 6 2 4 16
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7.8  Conclusion
In this chapter, we designed a dimensional model for the Sales Invoicing 
process. The objective was to put to test the DMDL developed in Chapter 5, 
“Dimensional Model Design Life Cycle” on page 103. 

We exercised the DMDL by executing the following phases, and completing a 
dimensional model of the sales invoice process:

� Identify the business process
� Identify the grain
� Identify the dimensions
� Identify the facts
� Verify
� Physical design considerations
� Meta data management

The important point to understand is that each phase of the DMDL consists of 
several activities. However, depending upon the business situation and the 
design need, you may use all, or only some of the activities inside each of the 
phases shown in the DMDL.

Inventory 4 9 3 4 20

Procurement 4 6 3 2 15

Sales Orders 4 9 3 4 20

Accounting 4 9 2 2 17

Production 2 3 3 6 14

Sales 
Invoicing

 6  9  3  4 22

Name of 
Business 
Process

Complexity Data quality 
and 
Availability 

System 
availability 

Strategic 
business 
significance

Final Points
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Chapter 8. Case Study: Analyzing a 
dimensional model

In this chapter we review an existing design of a dimensional model and provide 
guidelines to improve the model. So, the flow of this chapter is different because 
we typically describe how to design a new model from the beginning. 

In short, in this chapter the discussions focus on the following topics:

� Study the business of a fictitious company.

� Understand the business needs for creating a dimensional model.

� Review the draft dimensional model.

� Discuss guidelines for reviewing the existing dimensional model.

� Make improvements to the draft dimensional model, and discuss the reasons 
for doing so.

8
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8.1  Case Study - Sherpa and Sid Corporation
In this section, we briefly describe the fictitious Sherpa and Sid Corporation and 
its business. In doing so, we describe the reason that the corporation has 
submitted a request to build a data mart. 

8.1.1  About the company
Sherpa and Sid Corporation started as a manufacturer of cellular telephones, 
and then quickly expanded to include a broad range of telecommunication 
products. As the demand for, and size of, its suite of products grew, Sherpa and 
Sid Corporation closed down the existing distribution channels and opened its 
own sales outlets. 

In the past year Sherpa and Sid Corporation opened new plants, sales offices, 
and stores in response to increasing customer demand. With its focus firmly on 
expansion, the corporation put little effort into measuring the effectiveness of the 
expansion. Sherpa and Sid’s growth has started to level off, and management is 
refocusing on the performance of the organization. However, although cost and 
revenue figures are available for the company as a whole, little data is available 
at the manufacturing plant or sales outlet level regarding cost, revenue, and the 
relationship between them. 

To rectify this situation, management has requested a series of reports from the 
Information Technology (IT) department. IT responded with a proposal to 
implement a data mart. After consideration of the potential costs and benefits, 
management agreed.

8.1.2  Project definition
Senior management and IT put together a project definition consisting of the 
following objective and scope:

Project objective
To create a data mart to facilitate the analysis of cost and revenue data for 
products manufactured and sold by Sherpa and Sid Corporation.

Project scope
The project will be limited to direct costs and revenues associated with products. 
Currently, Sherpa and Sid Corporation manufacturing costs cannot be allocated 
at the product level. Therefore, only component costs can be included. At a future 
time, rules for allocation of manufacturing and overhead costs may be created, 
so the data mart should be flexible enough to accommodate future changes. IT 
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created a team consisting of one data analyst, one process analyst, the 
manufacturing plant manager, and one sales region manager for the project.

8.2  Business needs review 
In this section, we review the requirements gathering meta data. In other words, 
we review what the project team defined, and felt they needed to investigate, in 
order to understand the business need for the Sherpa and Sid Corporation. The 
understanding of the business will greatly help in the review of the data mart. 

The team identified the following areas of interest:

� Life Cycle of a product
� Anatomy of a sale
� Structure of the organization
� Defining cost and revenue
� What do the users want?

8.2.1  Life cycle of a product
The project team first studied the life cycle of a product. Each manufacturing 
plant has a research group that tests new product ideas. Only after the 
manufacturing process has been completely defined and approval for the new 
product has been obtained is the product information added to the company's 
records. Once the product information is complete, all manufacturing plants can 
produce it.

A product has a base set of common components. Additional components can 
be added to the base set to create specific models of the product. Currently, 
Sherpa and Sid Corporation has 300 models of their products. This number is 
fairly constant as the rate of new models being created approximately equals the 
rate of old models being discontinued. Approximately 10 models per week 
experience a cost or price change. For each model of each product, a decision is 
made about whether or not it is eligible for discounting. When a model is deemed 
eligible for discounting, the salesperson may discount the price if the customer 
buys a large quantity of the model or a combination of models. In a retail store, 
the store manager must approve such a discount.

The plant keeps an inventory of product models. When the quantity on hand for a 
model falls below a predetermined level, a work order is created to cause more of 
the model to be manufactured. Once a model is manufactured, it is stored at the 
manufacturing plant until it is requested by a sales outlet.
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The sales outlet is responsible for selling the model. When a decision is made to 
stop making a model, data about the model is kept on file for six months after the 
last unit of the model has been sold or discarded. Data about a product is 
removed at the same time as data about the last model for the product is 
removed.

8.2.2  Anatomy of a sale
There are two types of sales outlets: corporate sales office and retail store. A 
corporate sales office sells only to corporate customers. Corporate customers 
are charged the suggested wholesale price for a model unless a discount is 
negotiated. One of Sherpa and Sid Corporation's 30 sales representatives is 
assigned to each corporate customer. Sherpa and Sid Corporation currently 
serves 3000 corporate customers. A customer can place orders through a 
representative or by phoning an order desk at a corporate sales office. Orders 
placed through a corporate sales office are shipped directly from the plant to the 
customer. A customer can have many shipping locations. So, it is possible for a 
customer to place orders from multiple sales offices if the policy is to let each 
location do their own ordering. 

The corporate sales office places the order with the plant closest to the customer 
shipping location. If a customer places an order for multiple locations, the 
corporate sales office splits it into an individual order for each location. A 
corporate sales office, on average, creates 500 orders per day, five days per 
week. Each order consists of an average of 10 product models.

A retail store sells over the counter. Unless a discount is negotiated, the 
suggested retail price is charged. Although each product sale is recorded on an 
order, the company does not keep records of customer information for retail 
sales. A store can only order from one manufacturing plant. The store manager is 
responsible for deciding which products to stock and sell from their particular 
store. A retail store, on average, creates 1000 orders per day, seven days per 
week. Each order consists of an average of two product models.

8.2.3  Structure of the organization
It was clear to the team that understanding products and sales was not enough; 
an understanding of the organization was also necessary. The regional sales 
manager provided an up-to-date copy of the organization structure, which is 
depicted in Figure 8-1 on page 429.
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Figure 8-1   Sherpa and Sid Corporation organizational structure 

8.2.4  Defining cost and revenue
The project team studied the cost and revenue components from a business 
standpoint. Their goal was to be able to define cost and revenue, in order to be 
able to effectively analyze those factors.

For each product model, the cost of each component is multiplied by the number 
of components used to manufacture the model. The sum of results for all 
components that make up the model is the cost of that model.

For each product model, the negotiated unit selling price is multiplied by the 
quantity sold. The sum of results for all order lines that sell the model is the 
revenue for that model.

When trying to relate the cost of a model to its revenue, the team discovered that 
once a model was manufactured and added to the quantity on hand in inventory, 
the cost of that unit of the model could not be definitively identified. Even though 
the cost of a component is kept, it is only used to calculate a current value of the 
inventory. Actual cost is recorded only in the company's financial system, with no 
reference to the quantity manufactured.

The results of this determination were two-fold. First, the team requested that the 
operational systems be changed to start recording the actual cost of a 
manufactured model. However, both management and the project team 
recognized that this was a significant change, and that waiting for it would 
severely impact the progress of the project. Therefore, and based on the fact that 
component costs changed infrequently and by small amounts, the team defined 
this rule: 

The revenue from the sale of a model is always recorded with the current unit 
cost of the model, regardless of the cost of the model at the time it was 
manufactured.
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8.2.5  What do the users want?
Because the objective of the project was to create a collection of data that users 
could effectively analyze, the project team decided to identify a set of typical 
questions users wanted the data to answer. Clearly, this would not be an 
exhaustive list. The answer to one question would certainly determine what the 
next question, if any, might be. As well, one purpose of the data mart is to allow 
the asking of as yet unknown questions. If users simply want to answer a rigid 
set of questions, creating a set of reports would likely fill the need. With this in 
mind, the team defined a set of questions, and they are shown in Table 8-1.

Table 8-1   Business questions

As well as being able to answer the above questions, the users want to be able to 
review up to three complete years of data to analyze how the answers to these 
questions change over time.

S.no Business question

1 What are the total cost and revenue for each model sold today, summarized 
by outlet, outlet type, region, and corporate sales levels?

2 What are the total cost and revenue for each model sold today, summarized 
by manufacturing plant and region?

3 What percentage of models are eligible for discounting, and of those, what 
percentage are actually discounted when sold, by store, for all sales this 
week? This month?

4 For each model sold this month, what is the percentage sold retail, the 
percentage sold corporately through an order desk, and the percentage sold 
corporately by a salesperson?

5 Which models and products have not sold in the last week? The last month?

6 What are the top five models sold last month by total revenue? By quantity 
sold? By total cost?

7 Which sales outlets had no sales recorded last month for the models in the top 
five models list?

8 Which salespersons had no sales recorded last month for the models in the 
top five models list?
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8.2.6  Draft dimensional model 
Based on the business functions and the requirement gathering, the team came 
to the following conclusion:

� The Sherpa and Sid corporation is tracking the sales of its products (made in 
different manufacturing plants) to different customers.

� The Sherpa and Sid corporation is basically comprised of two broad 
operations:

– Manufacturing products in its manufacturing plants

– Sales of these products by its sales outlets to customers

� The customers of Sherpa and Sid corporation are either big corporate 
companies or retailers who buy directly over the counter. 

� Each customer purchases one or more products through an order.

� There are two types of seller outlets:

– Corporate sales office

– Retail stores

� The products can be bought in the following two ways:

– In the case of retail (non-corporate) customers, the products are 
purchased over the counter from retail outlets.

– In the case of corporate customers, orders can be placed over the phone 
and goods are delivered directly from plant to the particular corporate 
office.

Based on the above conclusions, the data mart team chose the grain for the 
dimensional model to be a single line item on an order placed. The draft 
dimensional model that the team built is shown in Figure 8-2 on page 432.
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Figure 8-2   Draft dimensional model before review

8.3  Dimensional model review guidelines
In this phase we review the design of the dimensional model shown in Figure 8-2. 
We perform this review by using the concepts presented in the Dimensional 
Model Design Life Cycle. See Chapter 5, “Dimensional Model Design Life Cycle” 
on page 103. The life cycle is divided into different phases. Each phase explains 
different concepts that help you in the design of the dimensional model.
432 Dimensional Modeling: In a Business Intelligence Environment



Figure 8-3   Dimensional Model Design Life Cycle

In this case study, instead of designing a new model, we review an existing one. 
Below we provide general guidelines to consider while reviewing the design of a 
dimensional model. 

8.3.1  What is the grain?
Grain specifies what level of detailed information your star schema will have. The 
grain is the most important part of the dimensional model. It is the grain definition 
that sets the stage for development of the entire model. An incorrect grain may 
lead to the redesign of the entire model. It is very important that enough time be 
spent on analyzing the grain definition. 

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, the grain definition is right and appropriate considering the need of 
the business to track the sales of the different product models on a daily basis 
(see the question in Table 8-1 on page 430).
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8.3.2  Are there multiple granularities involved?
There will be times when more than one grain definition will be associated with a 
single business process. In these scenarios, we recommend you design 
separate fact tables with separate grains and not forcefully try to put facts that 
belong to separate grains in a single fact table. 

You can handle differing data granularities by using multiple fact tables (daily, 
monthly, and yearly tables). Also consider the amounts of data, space, and the 
performance requirements to decide how to handle different granularities. The 
factors that can help you to decide whether to design one or more fact tables are 
discussed in more detail in 5.3.2, “Multiple, separate grains” on page 125. 

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, there are no separate fact granularities that are involved so there is 
only one fact table needed. The business requirements (questions 1 to 8) shown 
in Table 8-1 on page 430 show that only sales of products needs to be tracked for 
different products. Had the business required knowing the inventory of all sold 
products in different outlets, we would have had to design a separate fact table to 
handle inventory in each outlet on a daily basis. 

8.3.3  Check grain atomicity
Ideally we would like to design the dimensional model at the most atomic level. 
The dimensional model has been designed at the most atomic level if it cannot 
be further divided into detailed information. It is important for the dimensional 
modeling team not to be shortsighted. Suppose, for example, for now that the 
data needs to be summarized at the monthly level. The dimensional modeling 
team may, based on the current business requirements, decide to design the 
dimensional model with a monthly grain. But what if in future the business asks to 
see the data at the weekly level? The sooner you ask these types of questions, 
the better. In other words, try to foresee the business needs. In this case, if it 
seems likely that they may need to see weekly data in the future, then design the 
model at the most detailed level. This way you not only give the business what 
they need (monthly data) right now, but are also well positioned to proactively 
help them in future with daily data. 

For more discussion on the importance of having a detailed atomic grain, you 
can refer to the following:

� “Check grain atomicity” on page 128.
� “Importance of detailed atomic grain” on page 228

Review results for draft model: For the dimensional model shown in Figure 8-2 
on page 432, the grain is a single line item on an order. This is the most detailed 
atomic definition, so we do not need to go further. 
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8.3.4  Review granularity for date and time dimension
All dimensional models will surely consist of a date dimension. Some may have a 
time dimension too. Date and time dimensions play a very important role in 
identifying the level of detail of information that is going to be available in your 
model. Guidelines for handling date and time in your dimensional models are as 
follows:

� Date should be handled separately as its own dimension. We discussed the 
importance of handling date separately as a dimension in “Date and time 
granularity” on page 155. 

� Date and time dimensions should not be merged together. 

� If there are multiple dates involved in the dimensional model, then instead of 
creating separate physical tables for these dates, use the concept of 
role-playing to implement several dates as views from one main date table. 
The concept of role-playing is discussed in “Role-playing dimensions” on 
page 285. 

� Time can be handled in two ways:

– As a fact inside the fact table
– As its own dimension

We discussed this in more detail in 6.3.2, “Handling time as a dimension or a 
fact” on page 245.

� We may handle date and time across international time zones by storing both 
the local date/time and the international GMT date/time. This is discussed in 
“Handling date and time across international time zones” on page 248. 

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, there are two date dimensions involved. Currently, the order date 
and delivery date are both incorrectly stored in an order dimension table. The 
order date and delivery date should be separated into individual order date and 
delivery date dimensions. 

8.3.5  Are there degenerate dimensions?
A degenerate dimension is a dimension without attributes. Degenerate 
dimensions are typically numbers such as a booking number, order number, 
confirmation number, receipt number, and ticket number.

How to identify and handle a degenerate dimension
A degenerate dimension exists in the dimensional design if any of the following is 
true:
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� The dimensional design consists of a dimension table which has an equal 
number of rows as the fact table. In other words, if while loading your fact 
table with X rows, you need to pre-insert the same number of X rows in any 
dimension table, then this is an indication that there is a degenerate 
dimension table in your design.

� If any of your dimension tables have a nearly equal (but not equal) number of 
rows as compared to the fact table, then in this case there is a possibility of a 
degenerate dimension.

The concept of identifying and handling a degenerate dimension is discussed in 
more detail in the following sections:

– “Degenerate dimensions” on page 142.
– “Degenerate dimensions” on page 240.

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, the order table is actually a degenerate dimension. The order 
dimension table is storing the order number, order date, and delivery date. We 
discussed in 8.3.4, “Review granularity for date and time dimension” on page 435 
that order and delivery dates belong as separate dimensions and not in the order 
table. In addition to this, all order-related information, such as products ordered 
and from which outlet, is stored in separate dimensions such as product, 
manufacturing plant, and seller.

The order dimension therefore is degenerate and the only information remaining 
is the Order_Number, which can be stored inside the sales_fact table.

8.3.6  Surrogate keys
Primary keys of dimension tables should remain stable. We strongly recommend 
that you create surrogate keys and use them for primary keys for all dimension 
tables. In this section we discuss surrogate keys, and why it is important to use 
the surrogate keys as the dimension table primary keys. 

What are Surrogate Keys? 

Surrogate keys are keys that are maintained within the data warehouse instead 
of the natural keys taken from source data systems. Surrogate keys are known 
by many other aliases, such as dummy keys, non-natural keys, artificial keys, 
meaningless keys, non-intelligent keys, integer keys, number keys, technical 
integer keys, and so on. The surrogate keys basically serve to join the dimension 
tables to the fact table. Surrogate keys serve as an important means of 
identifying each instance or entity inside a dimension table. 

For a detailed discussion about surrogate keys and their importance, refer to 
“Reasons for using surrogate keys are:” on page 139. 
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Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observed that all the dimension tables are using the natural 
OLTP id instead of using a surrogate key. It is important that all dimension 
primary keys strictly be surrogate keys only.

8.3.7  Conformed dimensions and facts
A conformed dimension means the same thing to each fact table to which it can 
be joined. A more precise definition is that two dimensions are conformed if they 
share one, more than one, or all attributes that are drawn from the same domain. 
In other words, a dimension may be conformed even if it contains only a subset 
of attributes from the primary dimension.

Typically, dimension tables that are referenced, or are likely to be referenced by 
multiple fact tables (multiple dimensional models) are called conformed 
dimensions. 

Identify whether conformed dimensions or fact exist
If conformed dimensions already exist for any of the dimensions in your data 
warehouse or dimensional model, you will be expected to use the conformed 
dimension versions. If you are developing new dimensions with potential for 
usage across the entire enterprise warehouse, you will be expected to develop a 
design that supports anticipated enterprise data warehouse needs. In order to 
determine the anticipated warehouse needs, you might need to interact with 
several business processes to find out how they would define the dimensions. 
The same is true for conformed facts. 

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observed that this is the first effort toward building a data 
warehouse for the Sherpa and Sid Corporation. Therefore, since this is the first 
dimensional model of its kind, there are no previous shared or conformed 
dimensions or facts we can use for this data mart. 

8.3.8  Dimension granularity and quality
Dimension granularity specifies the level of detail stored in a dimension. The level 
of detail of all dimensions helps to determine the overall level of information that 
is available in the dimensional model. Guidelines for reviewing dimension 
granularity are:

� Every dimension should be reviewed to see if all attributes are true to the 
grain.

� Every dimensional attribute should take only one value for a single row inside 
the fact table. If a dimensional attribute has two or more values for a single 
fact table row, then you must treat this dimension as a multi-valued 
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dimension. The concept of handling multi-valued dimensions is explained in 
more detail in the following sections:

– “Other dimensional challenges” on page 166
– “Multi-valued dimensions” on page 288 

Important points to consider when choosing attributes for dimensions are 
explained as follows:

� Non-key columns are generally referred to as attributes. Every dimension 
table primary key should be a surrogate key which is not considered an 
attribute. Because the business users will not use this surrogate key for 
analysis (because it is simply an integer with no associated information). 

� Use a separate field in the dimension table to preserve the natural source 
system key of the entity that is used in the source system. 

� A schema design that contains complete, consistent, and accurate attribute 
fields helps users write queries that they intuitively understand and reduces 
the support burden on the organization (usually the IT department) 
responsible for database management and reports.

� A well-designed schema includes attributes that reflect the potential areas of 
interest and attributes that you can use for aggregations as well as for 
selective constraints and report breaks.

� If a dimension table includes a code, in most cases, include the code 
description as well. As an example, if branch locations are identified by a 
branch code, and each code represents a branch name, include both the 
code and the name. Avoid storing cryptic decodes inside a dimensional table 
attribute to save space.

� Make sure the attribute names are unique within your model. If you have 
duplicate names for different attributes, use the prime term (entity name) to 
create a distinction. For example, if you have multiple attributes called 
Address Type Code, one might be renamed Beneficiary Address Type Code, 
and another might be Premium Address Type Code. 

� The dimension attributes serve as report labels and should be descriptive and 
easy to understand. For example, in a given situation where you want to store 
a flag, such as 0/1 or Y/N, it is better to store something descriptive such as 
Yes/No instead.

� An attribute can be defined to permit missing values in cases where an 
attribute does not apply to a specific item, or its value is unknown.

� An attribute may belong to more than one hierarchy.

� Use only the alphabetic characters A-Z and the space character. Do not use 
punctuation marks or special characters, including the slash (/) or the hyphen 
(-).
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� While naming your attributes, do not use possessive nouns, for example, use 
“Recipient Birth Date" rather than "Recipient's Birth Date."

� Do not reflect permitted values in the attribute name. For example, the 
attribute name "Employee Day/Night Code" refers to code values designating 
day shift or night shift employees. Name the attribute to reflect the logical 
purpose and the entire range of values. For example, "Employee Shift Type 
Code,"  which allows for an expandable set of valid values.

� Do not include very large names for building your attributes. 

� Properly document all dimensional attributes. 

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, the following improvements need to be made:

� The Customer dimension stores address in a single column. In this way we 
are unable to determine the detail about addresses such as city, district, 
state, and region. We will redesign the address column to include more 
address details, such as street name, suite, city, district, state, and region.

� The draft dimensional model shown in Figure 8-2 on page 432 consists of 
codes in mostly every dimension. We need to include the detailed description 
for these codes also.

� All the dimension attributes have a single value for every fact table row. In 
other words, we do not need to use multi-value dimensions. 

8.3.9  Dimension hierarchies
A hierarchy is a cascaded series of many-to-one relationships. A hierarchy 
basically consists of different levels. Each level in a hierarchy corresponds to a 
dimension attribute. 

In other words, a hierarchy is a specification of levels that represents 
relationships between different attributes within a hierarchy. For example, one 
possible hierarchy in the date dimension is Year  Quarter  Month  Day.

There are three major types of hierarchies that you should look for in each of the 
dimensions. They are explained in Table 8-2 on page 440.

Note: It is important to remember that 85-90% of space in large dimensional 
models is occupied by the fact table. Therefore, saving space by using codes 
in dimensional attributes does not save much overall space, but these codes 
do affect the overall quality and understandability of the dimensional model.
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Table 8-2   Different types of hierarchies

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observe that the product hierarchy (Product Category  
Product Brand  Product Name) has been incorrectly snowflaked into separate 
tables. It is typically bad from a performance standpoint to snowflake hierarchies. 
The product, brand, and category tables should be merged into one product 
table.

8.3.10  Cases for snowflaking
Further normalization and expansion of the dimension tables in a star schema 
result in the implementation of a snowflake design. In other words, a dimension 
table is said to be snowflaked when the low-cardinality attributes in the 

S.No Name Hierarchy description How implemented

1 Balanced A balanced hierarchy is a 
hierarchy in which all the 
dimension branches have the 
same number of levels. For more 
details, see “Balanced hierarchy” 
on page 249.

See “How to implement a 
balanced hierarchy” on 
page 250.

2 Unbalanced A hierarchy is unbalanced if it has 
dimension branches containing 
varying numbers of levels. 
Parent-child dimensions support 
unbalanced hierarchies. For more 
details, see “Unbalanced 
hierarchy” on page 251.

See “How to implement 
an unbalanced 
hierarchy” on page 252. 

3 Ragged A ragged dimension contains at 
least one member whose parent 
belongs to a hierarchy that is 
more than one level above the 
child. Ragged dimensions, 
therefore, contain branches with 
varying depths. For more details, 
see “Ragged hierarchy” on 
page 260.

See “How to implement a 
ragged hierarchy in 
dimensions” on 
page 261.

Note: A dimension table may consist of multiple hierarchies. Also, a 
dimension table may consist of attributes or columns which belong to one, 
more, or no hierarchies.
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dimension have been removed to separate normalized tables and these 
normalized tables are then joined back into the original dimension table.

Typically, we do not recommend snowflaking in the dimensional model 
environment because it has drastic affects on the understandability of the 
dimensional model and can result in decreased performance because of the fact 
that more tables need to be joined to get the results.

We need to identify which dimensions need to be snowflaked for each of our 
dimensions that we have chosen for our dimensional model. There are no 
appropriate candidate snowflakes identified for the grocery store example.

The following topics on snowflaking are discussed in more detail in 6.3.7, 
“Identifying dimensions that need to be snowflaked” on page 277:

� What is snowflaking?
� When do you do snowflaking?
� When to avoid snowflaking?
� Under what scenarios does snowflaking improve performance?
� Disadvantages of snowflaking

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observe that the product hierarchy (Product Category  
Product Brand  Product Name) has been incorrectly snowflaked into separate 
tables. It is not appropriate for the product hierarchy to be snowflaked. In addition 
to this, there are no other tables that need to be snowflaked.

8.3.11  Identify slowly changing dimensions
A slowly changing dimension is a dimension whose attribute or attributes for a 
record (row) change or vary slowly over time. 

In a dimensional model, the dimension table attributes are not fixed. They 
typically change slowly over a period of time, but can also change rapidly. The 
dimensional modeling design team must involve the business users to help them 
determine a change handling strategy to capture the changed dimensional 
attributes. This basically describes what to do when a dimensional attribute 
changes in the source system. A change handling strategy involves using a 
surrogate (substitute) key as the primary key for the dimension table.

There are three ways of handling slowly changing dimensions. They are:

� Type-1: Overwrite the value.

� Type-2: Create a new row.

� Type-3: Add a new column and maintain both the present and old values.
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For more detailed discussion on slowly changing dimensions, refer to the 
following:

� “Slowly changing dimensions” on page 159
� “Slowly changing dimensions” on page 261

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observe that product, seller, manufacturing plant, and customer 
can be treated as slowly changing dimensions and handled using a Type-2 
change handling strategy.

8.3.12  Identify fast changing dimensions
Fast changing dimensions cannot be handled using slowly changing dimension 
handling strategies. That is, fast changing dimensions cannot be handled using 
the Type-1, Type-2, or Type-3 slowly change handling strategies. The rate of 
change of these dimensions is much faster when compared to slowly changing 
dimensions. It is important that we review each dimension to see if it is a fast 
changing dimension and handle it appropriately. It may be also possible that a 
fast changing dimension may have been handled using a Type-2 change 
handling strategy. Handling a fast changing dimension using a Type-2 approach 
is inappropriate, does not solve the fast changing problem, and can significantly 
increase the number of rows in the dimension. 

Fast changing dimensions are handled by splitting the main dimension into one 
or more mini-dimensions. For more detailed discussion about handling fast 
changing dimensions, refer to the following:

� “Fast changing dimensions” on page 162
� “Handling fast changing dimensions” on page 269

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observe that all dimensions can be handled comfortably using 
the Type-2 change handling strategy.

8.3.13  Year-to-date facts
The period beginning at the start of the calendar year, up to the current date, is 
called Year-to-Date. For the calendar year where the starting day of the year is 
January 01, the Year-to-Date definition is a period of time starting from January 
01 to a specified date. 

In other words, Year-to-Date facts are numeric totals that consist of an 
aggregated total from the start of year to the current date. For example, assume 
that a fact table stores sales data for the year 2005. The sales for each month 
are additive and can be summed to produce year-to-date totals. If you create a 
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Year-to-Date fact such as Sales_$$_Year_To_Date, then when you query this 
fact in August 2005, you would get the sum of all sales to August 2005. In other 
words, the Sales_$$_Year_To_Date fact stores aggregated values.

Other types of aggregated facts can be Month-to-Date facts and Quarter-to-Date 
facts. Dimensional modelers may include aggregated Year-to-Date facts inside 
the fact table to improve performance and also reduce complexities in forming 
Year-to-Date queries. However, storing such Year-to-Date facts inside the fact 
table may lead this fact to be incorrectly overcalculated if business users count it 
twice. Such untrue-to-grain facts should be calculated inside the front-end 
reports, and should not be stored as a fact, to avoid confusion.

Suggested approaches for handling Year-to-Date facts are as follows:

� Year-to-Date facts can be easily handled by OLAP-based applications.

� Year-to-Date facts can also be defined by using SQL functions in Views or 
Stored Procedures.

Review result for draft model: For the dimensional model shown in Figure 8-2 
on page 432, we observe that the fact table contains a year-to-date fact called 
Year-to-Date_Total at the line item grain. In other words, the fact called 
Year-to-Date_Total is untrue to the grain and should not be stored in this fact 
table.

8.4  Schema following the design review
After reviewing the initial draft schema as shown in Figure 8-2 on page 432, we 
made a number of improvements, resulting in the new design shown in 
Figure 8-4 on page 444. 
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Figure 8-4   Dimensional Model after review

Improvements made to the model include:

� The order dimension table has been dropped and replaced by the 
Order_Number which is a degenerate dimension. In other words, previously 
in the draft model shown in Figure 8-2 on page 432, the Order dimension was 
incorrectly represented as a dimension because it really had no attributes. 
The attributes, such as order date and delivery date, actually can be well 
represented as a separate dimension. 

� The Order_Date and Delivery_date columns have been removed from the 
Order table, which has now been made a degenerate dimension. The order 
date and delivery date have now been represented as separate dimensions 
using the common date dimension table.This is shown in Figure 8-4. This 
concept of using a common table to represent different conceptual 
dimensions is called role-playing. The concept of role-playing is discussed in 
more detail in “Role-playing dimensions” on page 285. 

� The quality of all the dimension tables has been improved by adding 
descriptions for the following coded columns in Figure 8-2 on page 432:

– Product_Model_Code
– Plant_Code
– Outlet_Code
– Customer_Code

Order_Number is a 
Degenerate Dimension

Date table is implemented 
with Order_Date and 
Delivery_Date using Views 
(Role-playing)
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In addition to the above codes, now the dimensional model shown in 
Figure 8-4 on page 444 also has descriptive columns that describe these 
codes. The new descriptive columns added are:

– Product_Model_Description (To describe Product_Model_Code)

– Plant_Description (To describe Plant_Code)

– Outlet_Description (To describe Outlet_Code)

– Customer_Description (To describe Customer_Code)

� In the draft design, we saw that all dimensions were using OLTP natural keys 
as primary keys. However, after review, we changed all dimension primary 
keys to surrogate keys. 

� We saw in the old draft design that the product tables hierarchy (Category  
Brand  Product name) had been incorrectly snowflaked into two separate 
tables. We believe that snowflaking hierarchies can be bad for browsing 
reasons because of the increased number of joins involved when selecting 
different components of the hierarchy. As shown in the revised design 
(Figure 8-4 on page 444), we have removed the snowflaked tables and 
merged the broken hierarchy into a single product table.

� We studied all the dimensions in detail and concluded that all dimensions 
changing data can be easily implemented using the Type-2 change handling 
strategy. Also we determined that there were no fast changing dimensions.

� We have removed the two Year-to-Date facts called Year_to_date_cost_total 
and Year_to_date_revenue_total from the fact table as shown in Figure 8-4 on 
page 444. This is because these year-to-date facts are untrue to the grain 
definition which is a single line item on the order. 

� In the old draft model, we saw that the customer address is stored inside a 
single column called Customer_Address. It is difficult to analyze the 
customers according to their city, district, state, and region if we have only a 
single address field. This is because all of these details are stored inside the 
Customer_Address column as a single string. To better analyze the customer 
address, we split the Customer_Address column in our improved, post-review 
design (Figure 8-4 on page 444) into more detailed address field columns, 
such as:

– Customer_Shipping_Street#

– Customer_Shipping_Street_Name

– Customer_Shipping_Suite

– Customer_Shipping_City

– Customer_Shipping_District

– Customer_Shipping_State
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– Customer_Shipping_Region
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Chapter 9. Managing the meta data

In this chapter we provide an overview of meta data, specifically for the purpose 
of implementing a data warehouse or dimensional database. 

The most common and simplistic description of meta data is data about data. 
Since this expression was coined, a long time has passed and the data 
warehouse and business intelligence environments have become bigger and 
more complex. More complex data warehouses have resulted in more complex 
data and more problems with managing data. The need to know more about the 
huge volumes of data stored in organizations has also impacted the definition of 
meta data. Meta data is now more commonly referred to as information about 
data. In other words, meta data is now considered information that makes the 
data understandable, usable, and shareable. 

Today, companies of all sizes are exposed to quickly evolving business 
environments that challenge the way computer systems and databases are 
designed and maintained. One of the most significant parts of this challenge 
derives from the business intelligence needs of companies today. The volume of 
data in companies is growing at a rapid rate, much of which is fueled by the 
Internet. While the Internet, and particularly the Web, grow and reach more and 
more locations, and computer systems become more and more complex, 
generating and relying on more and more data, we have to deal with the 
challenge of efficiently managing and taking advantage of volumes of data, and 
converting them into useful information. That is where the Business Intelligence 
and, more specifically, meta data management play their critical role.

9
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9.1  What is meta data?
In order to explain the meaning and usage of meta data, think of an example that 
refers to a typical IT (Information Technology) environment in a mid-size 
company where Business Intelligence has not yet been fully exploited.

This company has recently purchased a smaller company in the same branch of 
business, and that action has resulted in significant redundancy in certain types 
of data. This company already had a number of separate systems dispersed 
across various departments. There was some degree of integration between 
them, but they were designed at different times, and followed different 
implementation approaches. Sound familiar? Actually, this is a somewhat typical 
situation in many companies. One of the problems the company now has to deal 
with, or more particularly the IT-User community, is to understand the data 
available in each system and its interrelation with the data on other systems. In 
Figure 9-1, you can see some of the situations mentioned.

Figure 9-1   Data Structure of Company ITSO-CO

Company XYZ Partial Data Structure

InventoryPurchases

Sales System 123Sales System XYZ

T_212_XZZ_3
HALIFO_ID
SURON_NAME
FIRUTA_CLASS
JISSO_ID [FK]

P8793_DX
JISSO_ID
KIDA_NAME
ALIBUTO_TYPE

PURCHASE_INVOICES
INV_ID
INV_DT
AR_NM
SUPPLIER_ID
INV_AMT
PURC_ORD_NBR [FK]

PURCHASE_ORDERS
ORD_ID
ORD_TP_ID
SPL_ID
PYMT_TMS_ID
DVRY_TMS_ID
DVRY_WAY_ID
ORD_DT
DVRY_DT
INV_ID
FREIGHT

INVOICES
INV_ID
INV_DT
DUE_DT
AR_NM
CST_ID
INV_AMT
ORD_ID [FK]

ORDERS
ORD_ID

PURC_ORD_NBR
PYMT_TMS_ID
INV_ID
LNG_ID
CCY_ID
ORD_STUS_CD
ORD_DT

BILLING
BILL_ID
BILL_TO_ADDRESS
CUSTOMER_ID
PAYMENT_TERMS
INVOICE_DATE
SALES_ORDER_ID [FK]

SALES_ORDERS

SALES_ORDER_ID
ORDER_DATE
DELIVERY_DATE
FREIGHT
448 Dimensional Modeling: In a Business Intelligence Environment



As examples:

� These systems are not thoroughly documented anywhere, which implies that 
a system developer will have to analyze the database to find out what exactly 
the format is of any given field.

� Many times the table or field names are not meaningful. As examples, 
consider names such as T_212_XZZ_3, and P8793_DX as depicted in 
Figure 9-2. There needs to be documentation indicating such things as the 
primary purpose of each object, how can it be used, and from where it is 
populated.

Figure 9-2   Meaningless table names

� In Figure 9-3 there is a field called Purchase_Order_Number 
(PURC_ORD_NBR) in two different tables. They are Orders, in the Sales 
system, and Purchase_Invoices in the Purchasing system. In the Orders 
table, Purchase Order Number indicates the purchase order number used by 
the customer to order the goods that are being sold to him. In the Purchasing 
system, the Purchase_Order_Number indicates the purchase order number 
used when buying goods from a supplier. In the Sales system the first field, 
ORD_ID, is more typically called Customer_Order_Number. These are 
situations where a name in one system is used as synonym for a name in 
another. 

Figure 9-3   Same name with different meanings

� Now consider the Sales systems of the two merged companies. Look for 
invoice information. In Figure 9-4 on page 450, notice that the INV_ID field in 

T_212_XZZ_3
HALIFO_ID
SURON_NAME
FIRUTA_CLASS
JISSO_ID [FK]

P8793_DX
JISSO_ID
KIDA_NAME
ALIBUTO_TYPE

ORDERS
ORD_ID
PURC_ORD_NBR
PYMT_TMS_ID
INV_ID
LNG_ID
CCY_ID
ORD_STUS_CD
ORD_DT

PURCHASE_INVOICES
INV_ID
INV_DT
AR_NM
SUPPLIER_ID
INV_AMT
PURC_ORD_NBR [FK]
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the INVOICES table of Sales system of the Company ITSO-CO is equivalent 
to the field BILL_ID of the Sales system of the Company Res-CO. As well, the 
ORDERS table in the PURCHASES system, does not have the same 
meaning as in the Sales System.These observations may be more easily 
seen in Figure 9-1 on page 448.

Figure 9-4   Different names with the same meaning

Those familiar with these systems may think that all these clarifications are 
unnecessary and irrelevant. But think of a new user entering the company. Or, 
even riskier, a user changing departments who is sure they know the meaning of 
all the names used in the new department. Perhaps now you can get an idea of 
the confusion, and misinformation, that can occur in these situations. 

Well, the meta data is precisely the information that has to be kept in order to 
efficiently describe all the data objects in a company. A primary objective is to 
avoid the huge pitfall of having a highly inconsistent and unreliable methodology 
for the management of the information about the different data objects being 
used in the business. Keep in mind that a data object is not necessarily a 
particular field in a form or a table. In this context, when we say Data Object, we 
mean such things as fields, tables, forms, and reports. Even entire applications, 
such as Sales and Purchases, and all their associated data structures, can be 
considered Data Objects subject to the requirement to be described in the meta 
data. Keep in mind also that not only business users, but also system developers 
and modern and conveniently designed applications, need to work and access 
good meta data for efficient and reliable functioning. This is especially critical 
when interacting with other users, departments, or systems.

Notice that meta data not only describes structured, database recordable 
objects, it can also describe any sort of data container, such as e-mails, pictures, 
sound recordings, memos, books, and disks.

BILLING
BILL_ID
BILL_TO_ADDRESS
CUSTOMER_ID
PAYMENT_TERMS
INVOICE_DATE
SALES_ORDER_ID [FK]

INVOICES
INV_ID
INV_DT
DUE_DT
AR_NM
CST_ID
INV_AMT
ORD_ID [FK]
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9.2  Meta data types according to content
According to the data described, and the usage, we can distinguish four types of 
meta data:

� Business
� Structural
� Technical
� Operational

9.2.1  Business meta data
Also called informational or descriptive meta data, business meta data describes 
the contents of the business objects or any other data object in which the user is 
interested. We now take a look at typical questions or problems addressed by 
business meta data:

� In Figure 9-5, we have two tables from Sales Orders and Purchase Orders 
Systems. In both tables we find the field WEIGHT, which is used for freight 
calculation purposes with, more or less, the same meaning. However, in one 
system the weight is given in Kilograms. In the other system the weight is 
given in pounds.

Figure 9-5   Same name, same meaning, different unit of measure

� In the company reporting system, we also find a field called 
YEAR_TO_DATE_ORDERS. A user wanting to use this field for reporting 
purposes for the first time will have questions about it, such as: 

– How is the amount given? In dollars (think of an international application)? 
If it is in dollars, is it in currency units, or in, for example, thousands (K) of 
dollars? 

SALES_ORDERS
SALES_ORDER_ID
ORDER_DATE
DELIVERY_DATE
WEIGHT

PURCHASE_ORDERS
ORD_ID
ORD_TP_ID
SPL_ID
PYMT_TMS_ID
DVRY_TMS_ID
DVRY_WAY_ID
ORD_DT
DVRY_DT
INV_ID
WEIGHT
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– Are Order Amounts gross or net? That is, with or without such things as 
additional costs, taxes, and discounts? 

– Does year-to-date include the orders of the present month? Or, the orders 
of the present week? What about orders from today, until precisely the 
moment of the inquiry? 

Reference meta data
The reference meta data is an important type of business meta data and it 
describes the lists of values, groups of codes, types, and domains, which 
implicitly contain business rule information or static external information, such as 
status, geographical codes, types, and categories. 

9.2.2  Structural meta data
It is the meta data that describes the structure of the different data objects. It is 
useful when implementing navigation and presentation of the data to the user. 
For example:

� An EMAIL data object is composed of a header and body. The header has 
TO_ADDRESS, FROM_ADDRESS, DATE and SUBJECT. The body has 
TEXT, and attachment names or descriptors.

� A BOOK data object is, for instance, comprised of a TITLE, AUTHOR, 
TABLE_OF_CONTENTS, PREFACE, CHAPTERS, INDEX, and GLOSSARY. 
Every CHAPTER contains from 0 to many HEADERS.

� A PICTURE data object is described by a FILENAME, the FORMAT of the file 
(such as BMP or GIF.), and a description.

� A SOUND file can be described by the FILENAME, FORMAT, DATE, 
HIGHEST_TONE, and LOWEST_TONE, for example. 

9.2.3  Technical meta data
This describes all technical data necessary for the development, integration, 
functioning, and comprehension of the system applications. It defines source and 
target systems, and their table and fields, structures and attributes, and 
derivations and dependencies. For example:

� Database field formats and lengths, such as CUSTOMER_NAME 
VARCHAR(100)

� Table physical characteristics, such as TABLE_TABLESPACE_NAME = 
TS_MAIN_DATA

� Control fields, such as Record_Creation date or Record deleted
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This meta data is useful for Business Intelligence, OLAP, ETL, Data Profiling, and 
E/R Modeling tools.

9.2.4  Operational meta data
This type of meta data manages the information about operational execution 
(events) and their frequency, record counts, component-by-component analysis, 
and other related granular statistics. 

It is primarily used by operations, management, and business people.

9.3  Meta data types according to the format
According to the format, or type of container, we can also distinguish two types of 
meta data:

� Structured
� Unstructured

9.3.1  Structured meta data
Structured meta data is the meta data that can be efficiently stored and 
systematically accessed. For example, a relational database is a good recipient 
for structured meta data, since the data will always be accessed in the same way, 
for example, by inquiring using the same variables through the same paths. XML 
documents are also adequate for storing structured meta data.

9.3.2  Unstructured meta data
Unstructured meta data is stored in repositories or containers that do not allow 
systematic access to the information, for example, audio recordings, descriptive 
written documents without any internal structure, and employees.

9.4  Design
It is very important that the design of the meta data management system is 
user-oriented. Therefore, one of the first steps when building a meta data system 
is to conduct a workshop with the users. The goal of this workshop is to ensure 
that the business needs are satisfied, and that this is done in a comfortable way 
for the user. When designing a meta data system you should consider the 
following development methodology and structures:

1. Meta data strategy (Why?)
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2. Meta data model (What?)
3. Meta data repository (Where?)
4. Meta data management system (How?)

9.4.1  Meta data strategy - Why?
The first step working with meta data in a Business Intelligence environment is to 
develop the meta data strategy for this particular solution. It helps respond to the 
question why is it needed along with a detailed description. The strategy 
determines the specifics regarding meta data, including:

� Is there an existing meta data strategy and direction in place?

� Why is meta data needed? 

� What will be the business value of this information? 

� Who will use the meta data (including both tools and people), and for what 
purposes?

� What type of meta data is to be captured?

� When will that meta data be captured?

� Where will the meta data that is captured and collected get stored?

� How and when will this capture occur?

� How will the captured meta data be made available?

Once these questions have been answered, then the results must be prioritized 
in order to determine the level of effort that is required. The results of this 
prioritization allow the work to be directed toward the most important tasks.

9.4.2  Meta data model - What?
The next step is to determine how best to satisfy the prioritized needs identified 
in the strategy by determining what specific meta data will be captured. In order 
to answer what meta data to capture, an initial identification of the tools that will 
be used in the data warehouse environment need to be inventoried. These 
include data modeling, database management, ETL, and user reporting and 
analysis tools. 

Each of the specified types of tools has meta data that is needed as input to 
begin the specific tasks that will be supported by the tool. In addition, each tool 
produces meta data, which is needed by another tool at another point in time. 
The information that should be gathered about the tools is:

� A list of all types of meta data that each tool supports.
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� Identification of the meta data required to start the activity supported by each 
tool.

� Identification of the meta data that is produced by the activity supported by 
each tool.

� Determination of what specific types of meta data will be captured.

Note: Before attempting to do this identification, check to see if a meta-model has 
been developed for each tool.

You need the previous activities to determine the technical meta data. But you 
still need the business meta data, so that users can locate, understand, and 
access information in the data warehouse and data mart environments. 

Out of the analysis of these two meta data types, you should get a E/R logical 
meta data model, normalized to a reasonable extent, that consolidates the meta 
data models of the different systems. 

History
An important aspect to consider when specifying the meta data structure, is the 
history of the meta data. To a lesser or greater degree, the database structures of 
a company evolve. This evolution can take place at an application or database 
level, where new databases or applications replace old ones. Inside a database, 
old tables may not be used any longer and will probably be archived and deleted 
from the database. Data warehouses and data marts, because of their iterative 
approach, are especially volatile and unstable. For these structures, if the data 
history is kept during long periods, and the structure of the data changes, it is 
very important to keep track of the changes. Otherwise, there is a high risk that 
business information maintained during many years may become useless 
because it cannot be understood.

9.4.3  Meta data repository - Where?
The next step will be to determine where to collect the meta data that is captured 
during each activity and/or tool evaluation. This location may be in the tool itself 
(data models or reports), or collected and integrated into another medium (word 
document, spreadsheet, or meta data repository). As with any situation where 
information resides in multiple locations, the redundancy may introduce data 
integrity and data quality problems. On the other hand, integrating multiple 
sources of information requires additional time and effort.

Often the decision will be made to merely capture the meta data in each 
individual tool and then virtually integrate this by providing knowledge of where 
that meta data resides. Most, if not all, of the meta data can be integrated into a 
single meta data repository. This last method is costly but provides the highest 
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level of quality and should only be attempted if the organization is committed to 
maintaining and using the meta data in the future.

9.4.4  Meta data management system - How?
Once the determination of why, what, and where meta data will be addressed in 
this Business Intelligence effort, the actual steps to do the capture must be 
integrated into the project plan. This task may be fairly straightforward, as 
creating database tables and therefore producing the technical meta data for the 
tables. On the other hand, ETL (extract, transform, and load) tools and user 
query tools can capture a variety of meta data. A decision must be made as to 
the appropriate place to capture various types of meta data.

A good example is the business rules. Even though no one would doubt that this 
information is important and somehow needed, it must first be determined 
whether the results of this discovery are captured. If the decision to capture is 
made, then the second decision is where and when that capture will be done. Is it 
captured in the ETL tool where it is used as part of the load process or in the user 
query where the results are presented? The answer to these questions will 
determine whether the meta data captured is considered business (the rule 
defined in business terms) or technical (the rule expressed as a calculation or 
edit) meta data, or both.

If the meta data will be captured and maintained in the individual tools, the time 
to capture and the validation of the effort must be accounted for. If the individual 
tool meta data is to be integrated into a separate repository, time must be 
allocated for potential integration and resolution effort. 

9.4.5  Meta data system access - Who?
The last step, and the one most often ignored, needs to address who will use the 
meta data that is captured and how it will be provided to that identified user. The 
approach to provide business and technical meta data is often handled very 
differently (if indeed business meta data is even considered at all). 

The majority of the technical meta data is captured and maintained in individual 
tools. This information is most often required by developers or administrators, 
and access to this information is via use of the individual tools. This access must 
be identified and made available.

The type of business meta data to be captured and the users of this meta data 
are much harder to identify, and often ignored. When this business meta data has 
been identified, a way of accessing this information by the user must be 
developed. Most recently, APIs (application program interfaces) have been used 
to capture meta data from where it is stored and used to make it available 
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through other methods. An example of this is to take the definition of an item on a 
report from wherever that definition is stored, and make it available through a 
help facility as the report is being viewed.

One of the key points to remember in this step is that if the usage of meta data 
cannot be identified, the value of capturing it should be questioned. Data, of any 
kind, that is not used tends to decay. 

9.5  Data standards
Data standards are part of the meta data and can be understood as the rules or 
guidelines to be considered or followed when naming and coding the data 
objects, or setting the base of the data structure for every project that creates or 
handles data structures. These rules would be applicable to every project or 
activity, independently of the number of people and the size of the project. Here 
are examples:

Imagine that, in order not to forget your tasks, you write them down on your note 
pad, and you always write one short word or code with the task description 
indicating the priority and urgency. You may even document the meaning of the 
codes somewhere so that you do not forget what they mean. If you do that and 
do it consistently and systematically, and you always specify a code and a 
description of the task, and you always use the same codes, then you have 
designed your own data standards, and, although simple, they are working 
efficiently for you. 

From then on, you will only find good reasons for designing and maintaining 
(meta) data standards. Whether you work in a small team designing data 
structures or creating object information, and your work has to be combined and 
consolidated with the others’ work, or whether you consider the Web, a 
worldwide data structure, where everybody puts information, and from which 
everybody gets information, you will find that data standards are essential to 
efficiently create, interpret, and manage all the information. 

� The contents of the data
� The naming of the data
� The structure of the data
� The format of the data

9.5.1  The contents of the data
Data standards referred to as structured contents, such as the ones of a 
database, are equivalent to the reference meta data covered in “Reference meta 
data” on page 452. In that section we learned that reference meta data contains 
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information about the business rules, and one of its purposes is, precisely, to 
establish unique and common values for the data object contents (such as 
names and codes).

9.5.2  The format of the data - domain definition
A data domain, in the context of meta data, is the definition of a common type of 
data in your business. In Figure 9-6, you can see an example with the definition 
of the PERCENT domain. It states that a PERCENT type attribute is defined as a 
numeric field that can be nnn.nn where “.” is the decimal separator. In addition to 
the attributes you see in this example, you can specify that the values this 
domain can adopt range from 0.00 to 100.00. 

Figure 9-6   Example of a data domain definition

Using data domains, modern case tools allow you to efficiently describe the 
different percents you have in your database. For example, as you see in 
Figure 9-7 on page 459, for defining the attributes AlcoholVolume%, 
TotalSales%, or Tax%, you just need the data domain PERCENT. 
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Figure 9-7   Assigning data domains

Domains are used in data modeling to speed up the process of design, and help 
to efficiently maintain the data model.

Following the previous example, if, after the data model is finished, you need to 
redefine all the attributes under the same domain, you only need to redefine the 
domain. The tool cascades the changes of the domain to all the attributes that 
use that domain.

In the following sections we explain and recommend what to use for common 
data types. 

Dimension keys
For dimension keys and, generally speaking, for data warehouse keys, we 
recommend using surrogate keys. We explain the benefits and reasons in detail 
in “Primary keys for dimension tables are surrogate keys” on page 139.

Always choose an integer format. And choose the integer type in your database 
that provides the largest range. Integer length types vary from database to 
database. In DB2, for example, LONGINT, goes up to +9 223 372 036 854 775 
807. 
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Date data type
This is a data type that generates much confusion and causes trouble for people 
and programs when not correctly specified, published, and accepted. Just think, 
for example, about the date 10/12/05. In Europe that date corresponds to the 
tenth of December. In the United States, however, that date corresponds to the 
twelfth of October. And the year? Does it refer to 1905, or to 2005, or to some 
other century? 

Always define dates so that you use them consistently. For example, 
mm/dd/YYYY, where dd is the day of the month, mm is the month of the year, and 
YYYY is the year in the Gregorian calendar. These are typical values Western 
countries use. It is good practice not to use a YY format for the year. You may 
recall the issues caused by a two-digit format when we changed centuries from 
1900 to 2000.

Exceptions
Some applications still accept years in YY format. The important thing is that you 
define appropriate defaults and the year information is stored in the database in 
four digit format. Depending on the business subject, you should define your 
defaults in one way or the other. An example of how to process these date types 
is depicted in Example 9-1.

We do not see the benefit in using a two digit data format, and recommend you to 
always present the complete four digit year. Unless you are quite convinced 
about the short life of your application and the evolution and situations of the 
business are covered, this approach could become unreliable for assigning a 
wrong century to the years. For example, with regard to birth dates, it is possible 
to find people born in 2005 and 1905. 

Example 9-1   Year format example

Date of first ADSL contract in YY format (in pseudocode):
if YY > 90 then ADSL_DATE = 19YY

else ADSL_DATE = 20YY

Tip: If you are concerned about performance when choosing the length, the 
general rule is: 

If you foresee having a maximum of 10n records, then choose the integer type 
necessary to contain 102n. For example, if you are sure that your table will 
never have more than 100,000 records, then choose a surrogate key format to 
accommodate 1,000,000,000. With this approach, it is unlikely that you will run 
out of identifier values.
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Time data type
Time is less confusing than an unspecified date format, but also prone to 
misunderstandings. Always document the format you want, need, or expect to 
use in your daily operations, such as hh:mm:ss or hh:mm. Also specify the 
separator, as “:” or “.”, and do not forget to indicate whether it is in 12 hour format 
(a.m./p.m.) or 24 hour format.

Boolean data type: 
This is a type of domain that contains only two logical values: true and false. 
Unless the database server you use explicitly manages boolean values, we 
recommend you define this domain as a numeric field admitting the two values 0 
and 1. You can say that, for the user, a YES/NO field is better to understand than 
a number. But to get the user accustomed to it and gain acceptance to this 
solution is relatively easy. And, the database systems can handle 0 and 1 more 
efficiently, if appropriately defined. In addition, it makes additive operations 
straightforward. 

For example, assume that you have defined a boolean field named 
HAS_NO_CAR as numeric, and this field admits the values 0 and 1. If you want 
to find how many customers have not yet gotten a car, you only define a SUM 
operation on this field. Whether you are using a modern reporting tool, or you are 
manually entering the corresponding SQL-SELECT statement, this is a very 
straightforward operation. 

Now imagine that you have defined the field as CHARACTER. The selection of 
the customers who have not yet gotten a car is still easy. But if you or the user 
needing this information do not remember the two exact values of the boolean 
field, and the database or user application makes a difference between upper 
case and lower case, you can have trouble remembering which of the following 
variants is the right one: Y/N, y/n, Yes/No, YES/NO, yes/no, or True/False. This 
variant is also less appropriate because you have to cast between different data 
types. If you do not know well the database server system and do not know how 
to use its functions, or the OLAP tool you use does not efficiently support the 
data type conversion needed, then you have additional work to do when using 
boolean values for selection or calculation purposes.

Tip: Define your boolean domain as numeric, and use the values 0 and 1 for 
false and true respectively. This will enhance the data management 
performance, and simplify the arithmetic operations based on boolean fields.
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9.5.3  Naming of the data
In the section 9.1, “What is meta data?” on page 448 we saw how important is to 
have a common and unique understanding of the names given to every data 
object. In this section we list and describe options that help you to properly name 
your data and determine naming rules for your project or data structure. 

Historical considerations
In the past, one of the primary characteristics of computer systems was the lack 
of enough space for comfortably storing all the information handled. That 
affected the way data was stored, for example, when full postal addressees had 
to be stored in 20 character fields. But it also imposed limitations when naming 
system component names, such as, for instance, tables or fields. Because of 
that, system developers and users entering data had to start abbreviating as 
many words as possible. And, due to the lack of resources that database 
administrators and developers had available when working with data objects, 
often the name given to the data objects had nothing to do with the contents of 
the data object. 

Here is an example taken from a recent project. During the physical design of the 
database of a new data warehouse, the customer insisted on using the same 
naming rules for the new data warehouse tables they had for their existing OLTP 
environment. So, for example, the table containing the Customer Orders was 
DWHTW023, where DWH was the user or schema owning the table, T indicated 
that it was a table, “023” was a sequential number, and W had no special 
meaning as far as we could recall. Here ORDERS would have been a more 
appropriate name.

Remember that the standards are for helping business operations to work 
reliably, provided the benefit the standards bring is larger than the overhead they 
add to the business. It was correct to try to follow the standards, but it would have 
been much better to have changed and adapted somewhat to the new 
environments and business area needs, which was, reporting and data analysis 
activities. 

Naming: General considerations
Although it is common to use client tools for OLAP and reporting activities, often 
the business user is exposed directly to the database tables of the data marts or 
even to the main enterprise data warehouse tables. It is therefore important to 
name the table and fields as meaningfully as possible. The name should 
whenever possible refer to its contents and nothing else. The goal is that by 
looking at the name of the table or field, the user has no doubt about its contents. 
In the previous example, none of the parts of the name had any value or meaning 
to the user. 
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Abbreviations
Due to system limitations, but also in normal written or spoken communications, 
people tend to shorten the words for what we euphemistically call language 
economy. At the end we frequently find conversations, communications, and 
documents with such a high percentage of abbreviations, that somebody new to 
the business or the subject probably does not understand. 

And if there is a tendency to shorten what we verbally say, this tendency, 
regarding computer systems is even bigger because we have to key it instead of 
saying it. Fortunately any modern computer applications dealing with data at any 
level, including OLAP applications, offer easy-to-use drag-and-drop features that 
allow us not to have to worry any longer about our typing skills or the high 
probability to misspell a field. In OLTP environments you may still consider it 
advantageous to use abbreviations for naming data objects, because the user is 
normally not exposed to the internal data structure. However in a business 
intelligence environment we highly recommend you avoid the usage of 
abbreviations. Only names that appear in practically all tables are candidates for 
abbreviation. For example, Name, Description, Amount, and Number. Otherwise, 
use full names, unless the database physical limitations force you to abbreviate. 
And if you use abbreviations, abbreviate consistently following the standard 
company abbreviation list. 

In Chapter 7, “Case Study: Dimensional model development” on page 333, we 
used the standard abbreviation list used in IBM. An example is in Figure 9-8 on 
page 464.

Tip: Naming booleans. Whenever possible, use a verb in third person, such 
as, HAS, IS, and OWNS. For example, HAS_ALCOHOL, 
IS_PREFERRED_CUSTOMER, and OWNS_MORE_THAN_1_CAR. This is 
sufficient to indicate to the user that the contents of the field is of the type 
true/false. 

Technical prefixes, midfixes, and suffixes: Substrings containing technical 
or meaningless information, such as T for table, can be useful in OLTP 
environments. However, avoid them in data warehouse environments.
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Figure 9-8   IBM abbreviation list 

Glossary
Just like abbreviations, companies develop their own language or use acronyms 
typical of the respective business branch. It often happens that, during business 
conversations, users working in one department do not understand the users of 
another department. This situation gets even worse when the listener, or reader, 
is external to the company. In order to solve or alleviate that situation it is normal 
to maintain a corporate glossary, or according to the dimension and complexity 
of the areas covered, specialized glossaries. 

A glossary is a document or database, on paper or in electronic format, with a list 
of all the business words used in the daily activities of the company and their 
corresponding descriptions.

A company should always maintain a central and unique glossary. Modern tools 
allow an easy integration and publishing of this data.
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9.5.4  Standard data structures
In 9.5.2, “The format of the data - domain definition” on page 458, we explained 
that a domain is used to describe the structure of an attribute or field for 
standardization purposes. In the same way, you can use a domain to predefine, 
or standardize, upper level structures, for example, the fields of a physical 
dimension table, the attributes of a logical entity, and the relationship between 
determinate types of tables.

Structure example
When designing a dimensional model, there are several data objects that should 
be among your common objects. They are depicted in Figure 9-9.

Figure 9-9   Example of a standard basic dimensional design 

These are common elements to all the logical entities: “Names”, “Descriptions”, 
and “Natural Ids”. Keep in mind that this is an example for orientation purposes, 
and you might need different, or additional, attributes when designing your 
dimensional model. It is even possible that you may only need one attribute such 
as “Name” or “Natural Id”, and no “Description”. The need to include one or the 
other may change according to the business requirements. Nevertheless, at the 
corporate level, it is still possible, and recommended, to agree and propose a 
common fixed set of fields, even if not yet requested. Consider this from the 
perspective of the conformed dimensions, (see 5.4.3, “Conformed dimensions” 
on page 144), and consider how much will it take to implement a new field into 
the dimensions, and how big is the probability that a business process needs that 
information in the near or long-term future.

Dim A
Name
Description
Natural Id
Other Attributes

Facts
Fact 1
Fact 2
Fact ....

Dim B
Name
Description
Natural Id
Other Attributes

Dim ...
Name
Description
Natural Id
Other Attributes
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All the attributes we described above are defined at the logical levels. At the 
physical level, however, we need additional physical fields, depending on the 
auditing and technical controls you might need to perform on your data. An 
example is depicted in Figure 9-10. There we see more fields which have no 
particular business meaning but are needed for various technical purposes. For 
example, the surrogate keys (Dimension Keys) and the Record Creation Date, 
are necessary to know exactly when this information was written into the 
database.

Figure 9-10   Example of a physical structure 

Figure 9-11 on page 467 shows an example of a logical representation that can 
be used as a reference. Especially the data types and formats must be defined 
and consistently used across the data structure. 

DIM_A
DIM_A_KEY : BIGINT
NAME : CHAR(30)
DESCRIPTION : VARCHAR(1000) [Nullable]
NATURAL_ID : CHAR(30)
OTHER_ATTRIBUTES : CHAR(5) [Nullable]
RECORD_CREATION_DATE : DATE
SOURCE_SYSTEM : CHAR(30) [Nullable]
RECORD_EFFECT_TO_DATE : DATE
RECORD_EFFECT_FROM_DATE : DATE

FACTS
DIM_A_KEY : BIGINT [FK]
DIM_B_KEY : BIGINT [FK]
DIM_..._KEY : BIGINT [FK]
FACT_1 : DECIMAL(20,4)
FACT_2 : DECIMAL(10,2)
FACT_.... : REAL
RECORD_CREATION_DATE : DATE

DIM_B
DIM_B_KEY : BIGINT
NAME : CHAR(30) [Nullable]
DESCRIPTION : VARCHAR(1000) [Nullable]
NATURAL_ID : CHAR(30) [Nullable]
OTHER_ATTRIBUTES : CHAR(5) [Nullable]
RECORD_CREATION_DATE : DATE
SOURCE_SYSTEM : CHAR(30) [Nullable]
RECORD_EFFECT_FROM_DATE : DATE
RECORD_EFFECT_TO_DATE : DATE

DIM_...
DIM_..._KEY : BIGINT
NAME : CHAR(30) [Nullable]
DESCRIPTION : VARCHAR(1000) [Nullable]
NATURAL_ID : CHAR(30) [Nullable]
OTHER_ATTRIBUTES : CHAR(5) [Nullable]
RECORD_CREATION_DATE : DATE
SOURCE_SYSTEM : CHAR(30) [Nullable]
RECORD_EFFECT_FROM_DATE : DATE
RECORD_EFFECT_TO_DATE : DATE
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Figure 9-11   Reference meta data examples

Reference meta data structures
Reference tables are usually good for describing business rules, for example, 
product classes, sale order types, and tax types. In Figure 9-12, entities, 
including attributes, refer to typical business information, such as Product 
Categories, and Customer Classes.

Figure 9-12   One physical table per meta data reference type

Although, at a logical level, every type of reference meta data deserves its own 
logical entity, when physically implementing there are several approaches. The 
key common ones are:

� One physical table for each reference meta data type
� Only one physical table for all the reference meta data types

Sales Office
Sales Office Id
Name
Description
Country Id
City

Country
Country Id
Name
Description

Product
Product Id
Name
Description
Product Category Id

Product Category
Product Category Id
Name
Description

Customer
Customer Id
Name
Comments
Customer Class Id

Customer Class
Customer Class Id
Name
Description

SALES_OFFICE
SALES_OFFICE_ID
NAME
DESCRIPTION
COUNTRY_ID [FK]
CITY

COUNTRY
COUNTRY_ID
NAME
DESCRIPTION

PRODUCT
PRODUCT_ID
NAME
DESCRIPTION
PRODUCT_CATEGORY_ID [FK]

PRODUCT_CATEGORY
PRODUCT_CATEGORY_ID
NAME
DESCRIPTION

CUSTOMER
CUSTOMER_ID
NAME
COMMENTS
CUSTOMER_CLASS_ID [FK]

CUSTOMER_CLASS
CUSTOMER_CLASS_ID
NAME
DESCRIPTION
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Reference meta data in separate tables
One way to physically implement the reference meta data is by creating one table 
for every group of reference codes or types. So the physical design to the group 
above would convert into one such as that represented in Figure 9-13 on 
page 469. This approach is convenient because of the relatively easy way to join 
the tables. 

And, there is another potential advantage. If you use reference codes whose 
natural identifiers have significance and they are not foreseen to change either 
the code or the meaning, you might consider keeping them as identifiers. 
Suppose you have a Reference Table called “CURRENCIES”, and you have 
values such as GBP for British Pounds or USD for US Dollars. Although we insist 
on the usage of surrogate keys for uniquely identifying the information at a table 
record level, in this case it might be reasonable to use this short code as the 
primary key identifier. Practically any entity describing information for which ISO 
codes are available (such as Countries and Currencies) is a good candidate for 
this content denormalization. If considering Figure 9-12 on page 467, you need 
to select the Sales Offices in a certain country, you will not need to join the 
country table (assuming you know the short code of the country, such as CA for 
Canada or FR for France, for example). If you are highly concerned about query 
performance, you can follow this approach when populating your reference 
codes. 

However, this first approach presents the inconvenience of having to maintain 
dozens, possibly hundreds, of additional tables. That can be a problem if you 
expect frequent changes or additions to the reference meta data structure. If you 
are concerned about overall database performance you may not want to follow 
this approach, because having to maintain so many small tables will cause, to 
more or less of a degree, extra maintenance overhead to the database server, 
compared with the efficiency reached when managing fewer but larger tables.

Reference meta data in one main table

Another common solution is to put all or most of the reference meta data into one 
main table, as shown in Figure 9-13 on page 469.
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Figure 9-13   One table containing most or all the reference codes

This approach is particularly useful when you have numerous reference tables or 
you foresee that you will add new ones frequently. In this case with just two 
tables you can cover as many single reference tables as you need. However the 
inquiry and usage of the reference data is not as straightforward as when you 
have one table for each reference data group, or reference area. And in order to 
be able to sort the reference codes correctly you will need to handle them as 
numeric or alphanumeric. As you can see in Figure 9-13, the table COUNTRY 
has been left apart for having a different structure and needing two additional 
fields: ISO_COUNTRY_CODE and ISO_CURRENCY_CODE.

The use of reference meta data in dimensional modeling
In a dimensional data model you will want to select, filter, or group your data 
using available reference information, as in the example of the figure below 
where “Marketing Customer Category” can be WHOLESALER, STORE CHAIN, GAS 
STATION CHAIN, RESTAURANT, or SMALL SHOP. You may decide that you just want 
to have those names available in the CUSTOMER table. But imagine that you have 
to perform negative querying, as an example, producing a list of all “Marketing 
Customer Category” names without any sale during the previous year, or select 
by other attributes that you do not want to or cannot store in the dimension 
tables. In that case you may consider the use of the formal reference code 

COUNTRY
COUNTRY_ID
NAME
DESCRIPTION
ISO_COUNTRY_CODE
ISO_CURRENCY_CODE

CUSTOMER
CUSTOMER_ID
NAME
COMMENTS
CUSTOMER_CLASS_ID [FK]

PRODUCT
PRODUCT_ID
NAME
DESCRIPTION
PRODUCT_CATEGORY_ID [FK]

REFERENCE
REFERENCE_ID
CODE
NAME
DESCRIPTION
CODE_NUMERIC
REFERENCE_AREA_ID [FK]

REFERENCE AREA
REFERENCE_AREA_ID
NAME
DESCRIPTION
IS_ALPHANUMERIC

REFERENCE_AREA_ID: 1 
NAME: "Customer Class"

REFERENCE_AREA_ID: 2 
NAME: "Product Category"

SALES_OFFICE
SALES_OFFICE_ID
NAME
DESCRIPTION
COUNTRY_ID [FK]
CITY
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identifiers in the dimension tables, and the implementation of reference tables in 
a snowflake fashion, such as Country in Figure 9-14.

Figure 9-14   Example of denormalized and snowflaked reference data 

9.6  Local language in international applications
Companies are challenged by the business globalization that the Internet has 
triggered, and more particularly, the Web. In order to effectively reach the 
maximum number of customers, and efficiently work with the maximum number 
of partners, you need to translate into other languages not only the database 
contents, but also the interface component labels, such as fields and forms. 
Typically the translation of the presented information label on the screen is 
enough, but sometimes it may require additional comments or notes fields, 
particularly when the field labels can be extended by context help. 

An example is depicted in Figure 9-15 on page 471. Here we make the point that, 
because the students are of a different culture from the teacher, the material is 
best learned if it is presented in the language of the students.

Customer
Customer Id
Name
Comments
Type
Marketing Customer Category
Acronym
Original Customer Id
City
State
Delivery Way
Admits Partial Shipment
Financial Customer Group
Country Id [Foreign Key]

Country
Country Id
Name
Description
Region
ISO Country Code
ISO Currency Code

Facts
Product Id [Foreign Key]
Customer Id [Foreign Key]
Order Id [Foreign Key]
Date Id [Foreign Key]
Warehouse Id [Foreign Key]
Ordered Units
Delivered Units
Gross Sales
Cost of goods
Cost of order handling
Duty
Accrued Bonus
Delivered Liters
Spirit Liters
Discount Amount
Order Line
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Figure 9-15   Different cultures, different languages

In Figure 9-16 we show how it would be possible to store multilingual information 
applied to the data. Here we assume we want to keep translations of names and 
descriptions for the company products and translation of descriptions for 
contracts in several languages. This modeling is done at the business data 
content level. If, for example, you had to translate the names of the labels of the 
fields you see in the screen, or the fixed headers of a report, then you would have 
to provide a similar translation data structure within the meta data model so that 
the names of the meta data objects, and not only the contents, also get 
translated.

Figure 9-16   Example of structure necessary to store data for different languages

LANGUAGES
LANGUAGE_ID
NAME

CONTRACTS
CONTRACT_ID
CUSTOMER_ID
DESCRIPTION_ID [FK]

DESCRIPTIONS
DESCRIPTION_ID
DESCRIPTION
NOTES

PRODUCTS
PRODUCT_ID
NAME
DESCRIPTION_ID [FK]

TRANSLATIONS
LANGUAGE_ID [FK]
DESCRIPTION_ID [FK]
NOTES
NAME
DESCRIPTION
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9.7  Dimensional model meta data
In this section, we list and describe all the aspects that have to be considered 
when modeling or defining the meta data of a dimensional model. We also 
indicate how they fit into the dimensional model design life cycle (DMDL).

The following meta data is collected during the phases of the DMDL:

� Identify business process: The output of this phase results in the 
Requirements Gathering report. This report primarily consists of the 
requirements for the selected business for which you will design the 
dimensional model. In addition to this, this report also consists of various 
business processes, owners, source systems involved, data quality issues, 
common terms used across business processes, and other business-related 
meta data. 

� Identify the grain: The output of this phase results in the Grain Definition 
report. This report consists of one or multiple definitions of the grain for the 
business process for which the dimensional model is being designed. It also 
contains the type of fact table (transaction, periodic, or accumulating) being 
used. The grain definition report also includes high level preliminary 
dimensions and facts.

� Identify the dimensions: The meta data documented for this phase contains 
the information shown in Table 9-1. It includes such items as dimension 
names, hierarchies, updates rules, load frequency, load statistics, usage 
statistics, archive rules, archive statistics, purge rules, purge statistics, and 
attributes.

Table 9-1   Identify the dimensions - meta data

Dimension meta data Description

Name of Dimension The name of the dimension table.

Business Definition The business definition of the dimension. 

Alias Specifies the other known name by which the business 
users know the dimension. 

Hierarchy The hierarchies are present inside the dimension. They 
could be balanced, unbalanced, or ragged.

Change Rules Specifies how to handle slowly changing dimensions 
(type-1, type-2, or type-3) and fast changing dimension.

Load frequency The frequency of load for this dimension is typically daily, 
weekly, or monthly.
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Load Statistics Consists of meta data such as:
 Last load date: N/A
 Number of rows loaded: N/A

Usage Statistics Consists of meta data such as:
 Average Number of Queries/Day: N/A 
 Average Rows Returned/Query: N/A 
 Average Query Runtime: N/A
 Maximum Number of Queries/Day: N/A
 Maximum Rows Returned/Query: N/A
 Maximum Query Runtime: N/A

Archive Rules Specifies whether or not the data is archived.

Archive Statistics Consists of meta data such as:
 Last Archive Date: N/A
 Date Archived to: N/A

Purge Rules Specifies any purge rules. For example, Customers who 
have not purchased any goods in the past 48 months will be 
purged on a monthly basis.

Purge Statistics Consists of meta data such as:
 Last Purge Date: N/A
 Date Purged to: N/A

Data Quality Specifies quality checks for the data. For example, when a 
new customer is added a search is performed to determine 
if we already do business with this customer in another 
location. In rare cases separate branches of a customer are 
recorded as separate customers because this check fails. 

Data Accuracy Specifies the data accuracy. For example, incorrect 
association of locations of a common customer occur in 
less than .5% of the customer data.

Key The key to the dimension table is a surrogate key. 

Key Generation Method This meta data specifies the process used to generate a 
surrogate key for a new dimension row. 
For example, when a customer is copied from the 
operational system, the translation table (staging area 
persistent table) is checked to determine if the customer 
already exists in the dimensional model. If not, a new key is 
generated. The key, along with the customer ID and 
location ID, are added to the translation table. If the 
customer and location already exist, the key from the 
translation table is used to determine which customer in the 
dimensional model to update.

Dimension meta data Description
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Source This includes the following meta data:

 Name of the source system table: <Table Name>

 Conversion Rules: These specify how the insert/update 
to the dimension table occurs. For example, rows in each 
customer table are copied on a daily basis. For existing 
customers, the name is updated. For new customers, once 
a location is determined, the key is generated and a row 
inserted. Before the update/insert takes place a check is 
performed for a duplicate customer name. If a duplicate is 
detected, a sequence number is appended to the name. 
This check is repeated until the name and sequence 
number combination are determined to be unique. Once 
uniqueness has been confirmed, the update/insert takes 
place.

 Selection Logic: Only new or changed rows are
selected.

Conformed Dimension This specifies if the dimension being used is a conformed 
dimension. 

Role-playing Dimension This specifies if the dimension is being implemented uses 
the role-playing concept. Role-playing is explained in 6.3.9, 
“Role-playing dimensions” on page 285. 

Dimension meta data Description
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The meta data information shown in Table 9-1 on page 472 needs to be 
captured for all dimensions present in the dimensional model.

� Identify the facts: The meta data documented for this phase contains the 
information as shown Table 9-2.

Table 9-2   Identify the Facts - meta data

Attributes (All columns 
of a dimension)

The meta data for the all the dimension attributes includes 
the following:

 Name of the Attribute: <Attribute Name>

 Definition of the Attribute: Attribute definition

 Alias of the Attribute: <Attribute Name>

 Change rules for the Attribute: For example, when an 
attribute changes, then use Type-1, Type-2, or Type-3 
strategy to handle the change.

 Data Type for the Attribute: Data Type, such as Integer 
or Character.

 Domain values for the Attribute: Domain range such as 
1-99.

 Derivation rules for the Attribute: For example, a system 
generated key of the highest used customer key +1 is 
assigned when creating a new customer and location entry.

 Source: Specifies the source for this attribute. For 
example, for a surrogate key, the source could be a system 
generated value. 

Facts This specifies the facts that can be used with this 
dimension.
Note: Semi-additive facts are additive across only some 
dimensions.

Subsidiary Dimension This specifies any subsidiary dimension associated with 
this dimension. 

Contact Person This specifies the contact business person that is 
responsible for maintaining the dimension. 

Fact table meta data Description

Name of Fact Table The name of the fact table.

Dimension meta data Description
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Business Definition The business definition of the fact table. 

Alias The alias specifies the other known name by which the 
business users know the fact table. 

Grain This specifies the grain of the fact table.

Load frequency The frequency of load for this fact table, such as daily, weekly, 
or monthly.

Load Statistics Consists of meta data such as:
 Last load date: N/A
 Number of rows loaded: N/A

Usage Statistics Consists of meta data such as:
 Average Number of Queries/Day: N/A 
 Average Rows Returned/Query: N/A 
 Average Query Runtime: N/A
 Maximum Number of Queries/Day: N/A
 Maximum Rows Returned/Query: N/A
 Maximum Query Runtime: N/A

Archive Rules Specifies whether or not data is archived. For example, data 
will be archived after 36 months on a monthly basis.

Archive Statistics Consists of meta data such as:
 Last Archive Date: N/A
 Date Archived to: N/A

Purge Rules Specifies any purge rules. For example, data will be purged 
after 48 months on a monthly basis.

Purge Statistics Consists of meta data such as:
 Last Purge Date: N/A
 Date Purged to: N/A

Data Quality Specifies data quality checks for the data. For example, 
assume that we are designing a fact table for inventory 
process. Inventory levels may fluctuate throughout the day as 
more stock is received into inventory from production and as 
stock is shipped out to retail stores and customers. The 
measures for this fact are collected once per day and thus 
reflect the state of inventory at that point in time, which is
the end of the working day.

Fact table meta data Description
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Data Accuracy This specifies the accuracy of fact table data. For example, 
assume that we are designing a fact table for the inventory 
process. We may conclude that the measures of this fact are 
97.5% accurate at the point in time they represent. This may 
be based on the results of physical inventories matched to 
recorded inventory levels. No inference can be made from 
these measures as to values at points in time not recorded.

Grain of the Date 
Dimension

Specifies the grain of the date dimension involved. For 
example, the date dimension may be at the day level.

Grain of the Time 
Dimension

Specifies the grain of the time dimension involved. For 
example, the time dimension may be at the hour level.

Key The key of the fact table typically consists of concatenation of 
all foreign keys of all dimensions. In some cases, the 
degenerate dimension may also be concatenated to 
guarantee the uniqueness of the primary composite key. This 
is shown in Figure 5-31 on page 178. 

Key Generation 
Method

The key generation method specifies how all the foreign keys 
are concatenated to create a primary key for the fact table. 
Sometimes a degenerate dimension may be included inside 
the primary key of fact table to guarantee uniqueness. This is 
shown in Figure 5-31 on page 178.

Source The meta data for the source includes the following:

 Name of the Source: <Source Name>

 Conversion rules for the source: Rules regarding the 
conversion. For example, each row in each inventory table is 
copied into the inventory fact on a daily basis.

 Selection Logic: The logic for selecting the rows.

 Facts This specifies the various facts involved within the fact table. 
They could be:
 Additive
 Non-additive
 Semi-additive
 Pseudo
 Derived
 Factless Fact
 Textual 

Conformed Fact This specifies if any conformed facts are in the fact table.

Fact table meta data Description
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� Verify the model: This phase involves documenting meta data related to user 
testing (and its result) on the dimensional model. Any new requests made or 
changes to the requirements are documented.

� Physical design considerations: The meta data documented for this phase 
contains the information as shown Table 9-3.

Table 9-3   Physical design considerations - meta data 

Based on all the information listed in this section, we have built the meta data 
model shown in Figure 9-17 on page 479. It properly describes the relationships 
between the different components. Notice that it is a logical view, and that, for the 

Dimensions This specifies the dimensions that can validly use these facts. 
Note: Some facts are semi-additive and can be used across 
only some dimensions.

Contact Person This specifies the contact business person responsible for 
maintaining the fact table. 

Physical design 
consideration meta data

Description 

Aggregation The aggregation meta data includes the following:

 Number of Aggregate tables

 Dimension tables involved in creating aggregates
 Dimension Hierarchies involved in creating 

aggregation

 Fact table and facts involved in creating aggregates

Information relating to the aggregate tables can include 
such items as the following:
 Load frequency
 Load statistics
 Usage statistics
 Archive rules
 Archive statistics
 Purge rules
 Purge statistics
 Data quality
 Data accuracy

Indexing This specifies the indexing strategy used for dimension 
and fact tables.

Fact table meta data Description
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sake of understanding of the data structure, some subtypes have not been 
resolved. 

We have specifically tailored this meta data model to the star schema meta data. 
However it could be easily integrated in other more generic meta data structures.

Figure 9-17   Meta Data model
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9.8  Meta data data model - an example
In Figure 9-17 on page 479, the data model is focused on the star schema meta 
data. In Figure 9-18, we show a more generic meta data model which covers not 
only data stored in databases, but also that stored in other types of data 
containers. We have chosen a traditional fixed explicit data structure to show the 
possibility of storing meta data about such types as documents, web pages, and 
computer office files. If the business you want to model is rather dynamic, and 
the data structures or business processes change with a relatively high 
frequency, you might decide to design a more abstract data model where the 
attributes and entities do not need to be specified in advance. 

Figure 9-18   Different types of data objects described by the meta data 
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9.9  Meta data tools
Years ago there were not many types of data management tools, apart from the 
database management systems. And these systems were the only ones offering 
a meta data system, which was called the Data Dictionary. This was just an 
externalization of the user data structure descriptions needed by the database 
management system itself in order to function. And it was covering a limited 
scope of what we understand today as meta data. 

Since then, as data management has evolved, new tool groups, offering to a 
greater or lesser degree of meta data management functionality, are available. 
These groups, according to their data management focus, are divided into 
categories such as ETL (extract, transform, and load), data modeling, data 
warehouse management, content management, and OLAP. 

Today, every data management tool, regardless of the type, normally provides 
meta data management functions. The problem is that typically the functionality 
is focused on a specialized area. That is, ETL tools will be very technical and will 
describe the transformation of data between systems, but often will not 
implement more abstract business meta data. Or, looking at the other extreme, 
some OLAP tools will be prolific in mapping and describing business data, but 
will not describe the meta data present in OLTP systems. 

The primary issue resides in the integration of the tool with all the other 
processes and data structures of the business. Today, almost every company has 
to deal with information of the types presented in 9.2, “Meta data types according 
to content” on page 451, that is, business, technical, structural, and reference 
meta data. Business meta data, in certain companies, not only covers the data 
but also the processes responsible for the generation and transformation of data 
at any level. In these situations, it is typical for companies implementing a meta 
data system to focus on the most relevant area and choose the meta data 
management tool based on the coverage of that area.

9.9.1  Meta data tools in business intelligence
There are three primary approaches for managing meta data:

� Manually

� Customizing a meta data tool in order to collect information from other 
systems, or to transfer information by using adequate meta data information 
exchange protocols.

� Using the available tool modules in order to directly exchange meta data. 
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Each tool that supports the effort in a business intelligence environment has a 
need for information to begin. This is often meta data that has previously been 
collected or produced. How this information is provided (for example, by manual 
input or tool to tool exchange) must be identified. As the tool is used, additional 
meta data is created. When the usage of the tool or activity is completed, there is 
meta data that has been produced as the results of that effort. That meta data 
should be considered the minimum requirements. 

To prevent administrative inefficiency, a mechanism must be found for tools from 
different vendors to share common information. This can be a very difficult task. 
For example, each tool defines the same object in a different manner and 
therefore the objects are not easily shareable. Furthermore, the same meta data 
is redundantly defined and stored in multiple meta data stores, data dictionaries, 
repositories, database catalogs, and copy libraries, each with a different API. 
Typically, the tools cannot exchange meta data among themselves because the 
meta data is stored in a proprietary format understood only by a specific tool. As 
a result, changes to meta data in one meta data store are not easily changed in 
the others. 

The work of the Object Management Group (OMG), of which IBM is a major 
contributor, has concentrated on minimizing these differences through the 
adoption of a standard meta model for BI efforts and the recommendation of a 
standard Extensible Markup Language (XML) interface. The results of these 
efforts should minimize the difficulty in the future. 

9.9.2  Meta data tool example
We now look at the information we have been discussing, from a tool 
perspective. For this discussion, we have chosen MetaStage®, the meta data 
management tool from Ascential™ Software, an IBM company.

MetaStage introduction
This tool enables integration of data from existing data warehousing processes. 
A special program module monitors these processes that generate operational 
meta data. The tool then stores and uses the operational meta data. This 
enables the collection of detailed information about what has happened across 
the enterprise.

Most data warehousing products generate their own meta data, with no common 
standard for exchanging the meta data. MetaStage integrates all the meta data in 
a centralized directory, from which you can share the meta data with other tools. 
No additional work is required by the tool vendors. This means you can use 
unrelated data warehousing tools in a single environment.
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By integrating meta data from the entire enterprise, MetaStage can provide 
answers to such questions as where a piece of data came from, what 
transformation and business rules were applied, who else uses the data, and 
what the impact would be of making a particular change to the data warehouse. It 
also quickly provides detailed hyperlinked reports about items of data and their 
relationships with other data.

In summary, MetaStage serves as an enterprise-wide tool for many data 
warehousing functions, such as:

� Synchronizing and integrating meta data from multiple data warehouse tools

� Automatically gathering operational meta data from operational systems

� Sharing meta data, job components, and designs

� Browsing, querying, searching, and reporting on all the meta data of the data 
warehousing assets from a single point

� Understanding the sources, derivation, and meaning of data in the data 
warehouse

� Assessing the impact of changes on data warehousing processes

Integrating meta data
You can integrate your own tools and procedures with MetaStage. It enables you 
to transfer and translate meta data between different external tools, including 
modeling, design, extraction, transformation, and data analysis tools. For 
instance, you can collect meta data from these other tools and use it to design 
data warehouse processes. Or you can export meta data directly to data analysis 
tools to avoid tedious manual data entry. 

MetaStage does not impose a single common model on the meta data you want 
to share. A common model gives you only the lowest common denominator of 
the meta data that your data warehousing tools can share. Instead, this tool 
breaks down the meta data from a data warehouse tool into semantic atoms that 
can then be reconstituted for use by other data warehouse tools. Individual 
MetaBrokers, described in “MetaBrokers” on page 492, provide an interface 
between each tool and the semantic units of meta data held in a particular 
directory.

This tool captures and stores the following types of meta data:

� Design meta data, used by designers and developers to define 
requirements. It includes data models, business meta data, and 
transformation job designs.

� Physical meta data, created, managed, or accessed by tools when they are 
executed.
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� Operational meta data, which tells you what happens when a data 
warehouse activity runs, particularly with regard to the way it affects data 
warehouse resources.

Capturing operational meta data
MetaStage can automatically capture the meta data that describes events that 
occur when a data warehouse process is running. It then uses this operational 
meta data to build a view of the relationships between the resources in the data 
warehouse. By enabling the combination of the operational meta data with the 
design meta data for these activities, this tool provides you with extensive query 
capabilities.

Sharing meta data
Meta data can be shared throughout the enterprise with users of the leading data 
warehousing tools with MetaStage. The major steps to do this are:

1. Create the meta data using an appropriate tool, such as DataStage™ or 
Platinum ERwin.

2. Import the meta data into this tool via a tool-specific MetaBroker® or capture 
it with the Process MetaBroker.

3. Publish the selected meta data, so that interested users can subscribe to it 
and export it for use with their data warehousing tool. Note, this does not have 
to be the same tool used to create the meta data.

For example, you can import meta data from a database design tool into a 
particular directory, then export that meta data to DataStage to define the tables 
and columns to be populated by a DataStage job. Or you might export the meta 
data for use by a business reporting tool, such as Business Objects. You can also 
use the Send to Database functionality to export data to a set of relational tables.

Analyzing and reporting on resources
After you import meta data into a particular directory, or capture operational meta 
data from data warehousing activities, you can browse, query, or search the 
complete meta data structure in the directory, following relationships between the 
objects. These functions are all accessed from a tool component called the 
Explorer, which is described in “Explorer” on page 495.

You can do the perform the following functions:

� Inspect the attributes and relationships of one or more objects in the tool 
directory.

Note: MetaStage uses MetaBrokers to import and export meta data 
directly from and to data warehousing tools.
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� Specify which person or organization is responsible for an object.

� Associate the object with a business term, the term with a glossary, and the 
glossary with a business domain.

� Browse from an object, following its relationships to other objects it contains 
or depends on.

� Run a simple search of a directory.

� Investigate the lineage of data in the data warehouse.

� Investigate the execution history of processes, such as DataStage jobs.

� Use cross-tool impact analysis to investigate the impact of making a change 
to a data warehouse resource or process.

� Build and run customized and predefined queries for more complex searches.

� Document your meta data by creating reports in a variety of formats, including 
HTML and XML.

Inspecting objects
This tool makes it easy for you to inspect any object in the tool directory—a 
DataStage table definition, for example—viewing its attributes and relationships, 
its overlap in other data warehousing tools, and the queries and templates you 
can run to generate more information about it.

Browsing from an object
Using the navigation pane in the Content Browser, you can follow the 
relationships from any meta data object—a DataStage project, for example—to 
all the objects that populate those relationships, up and down the hierarchy. You 
can also display the same object from the perspective of a different data 
warehouse tool—using a different MetaBroker view—and follow the different 
relationships available in that tools view. An example content browser is depicted 
in Figure 9-19 on page 486.
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Figure 9-19   Explorer: Content Browser

Performing a simple search
Simple searches let you scan a subset of a particular directory for objects that 
meet criteria based on name, description, date, and meta data type. You can 
save the properties of the objects found by the search to a text file that can be 
read by Microsoft Excel, for example. 

Investigating data lineage
Data lineage investigations of operational meta data enable you to find the 
history of a data item, for example, its source, status, and when it was last 
modified. When you combine data lineage and impact analysis, you can answer 
such questions as “From where is a particular column of a particular physical 
target table derived?” and “When was it last derived?” The tool, Process 
MetaBroker, gathers the operational meta data to answer questions about data 
lineage by monitoring activity that affects the data warehouse. It records the data 
resources affected by, for example, a job run, and whether they were written to or 
read from. This tool can also import operational meta data from DataStage 
mainframe jobs. An example of a data lineage report is depicted in Figure 9-20 
on page 487.
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Figure 9-20   Data Lineage report

Performing process analysis
Process analysis investigations are similar to data lineage investigations, but 
they give information on process execution rather than data movement. Process 
analysis lets you look at the history of process executions by examining 
operational meta data. You can answer questions such as “What are the details 
of the last run of each of these executables?”, “Which parameters were used 
each of the last three times this process ran?”, and “What information is available 
about the job that generated this fail event?” 

Performing impact analysis
The impact analysis function enables you to answer questions such as “What 
else will be affected if I make this change?” and “What else is this object 
dependent upon?” For example, you can find out the effect of deleting a 
particular transform definition from a particular directory.

This tool provides impact analysis by following relationships within the meta data 
stored in a directory. The cross-tool support means these relationships can span 
tools and therefore the whole realm of your data warehouse implementation. For 
example, you can use this tool to find out not only which DataStage jobs are 
affected by a change to a routine, but also which CASE diagram is associated 
with the routine. An example of a cross-tool impact analysis is depicted in 
Figure 9-21 on page 488.
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Figure 9-21   Cross-tool impact analysis

Running queries
To fully explore the meta data in a particular directory, you can build your own 
customized queries using the Query Builder. This lets you answer questions that 
involve following complex relationships between data warehouse components. 
The result of the query is a collection of objects, sorted according to your 
specified criteria. You can refine a search by using the result of one query as the 
starting point for another.

A query can be saved, then reused to examine different collections of objects. 
You can also export queries to a text file, from which they can be imported into 
other tool directories. 

Documenting your meta data
This tool lets you almost instantly create complex, hyperlinked reports that show 
the relationships and attributes of an object or a collection of objects in a 
particular directory. You can create these reports in HTML, XML, RTF, and text 
format and print them out or display them in a Web browser, Microsoft Word, or a 
text editor. An example of the MetaStage Browser is depicted in Figure 9-22 on 
page 489.
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Figure 9-22   MetaStage Browser

MetaStage components
MetaStage consists of client and server components. The primary components, 
and the flow of the meta data, is depicted in simplified form in Figure 9-23. 

Figure 9-23   MetaStage components
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server components. Meta data is added to a particular directory in the following 
ways:

� Importing meta data from external tools via MetaBrokers

� Using the Process MetaBroker to capture operational meta data generated by 
data warehousing activities

The sections that follow provide overviews of the MetaStage components.

Directory
This tool holds meta data in a particular directory. You can import static meta 
data from external tools, such as ERwin or DataStage, and capture operational 
meta data automatically from data warehousing activities. A directory is a server 
component. It is built using relational database tables on a Windows® NT or 
UNIX® server, and is accessed via ODBC. The tool administrator can create 
more than one directory in a particular system, and users can specify the 
directory in which their meta data is stored. 

Meta data is held in a directory as objects, which are derived from a hierarchy of 
classes. Objects represent both physical and nonphysical components of the 
data warehouse. They are cross-linked in a variety of ways, with links being built 
from imported meta data and from the events that occur when data warehousing 
activities are executed. The object attributes and relationships enable this tool to 
provide information about data warehousing processes and assets. Whenever 
the content of a directory changes significantly, for example as a result of meta 
data being imported, the tool creates a new version of the directory. Versioning 
provides a history of directory changes, and lets the tool administrator roll back a 
directory to a known point if a problem occurs. An administrator can label 
versions, for example to document the change history of a collection of objects 
created or modified by particular imports.

MetaStage provides three ways of viewing the structure of objects in a given 
directory:

� Relationship hierarchy. Most objects in a directory, that represent an 
element in the data warehouse with which you can interact directly, have a 
variety of potential relationships with other objects. An object can contain 
other objects, much as a table contains columns, or can depend on another 
object, much as a column depends on a data element. You can track 
relationships between objects by browsing this hierarchy of relationships.

� Class hierarchy. All the objects in a directory are instances of a class, and 
many classes are subclasses of other classes. The class hierarchy clarifies 
what components are in a data warehouse. For example, it can show you a 
collection of all the computers. The MetaBroker for each external tool has a 
different class hierarchy— derived from its data model—that determines its 
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view of the data. The tool itself also has a class hierarchy that encompasses 
most of the classes in the different MetaBrokers. You can view the objects in 
the tool directory through the view of the MetaBroker for any tool. The names, 
attributes, and possible relationships for each object depend on the view. For 
example, a table object seen in a particular product view, becomes a table 
definition in the DataStage view and a data collection in the tool view. In this 
way attributes and relationships an object has can be seen if you export it to 
another tool. 

� Categories. This tool uses categories to organize objects in a directory. The 
category types include:

– User-defined categories, which let you organize objects in a way that 
reflects your own view of your data warehousing resources.

– Import categories, which hold objects imported from external tools.

– Publication categories, which contain objects that have been made 
available to export to an external tool.

– Business Domain and Glossary categories for holding information on meta 
data objects associated with business terms.

– Steward categories for designating that an individual or organization is 
responsible for particular meta data objects.

An example of the category browser is depicted in Figure 9-24 on page 492.
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Figure 9-24   MetaStage Explorer: Category browser

MetaBrokers
MetaBrokers provide an interface between a particular directory and the external 
data warehousing tools. MetaBrokers can also be used with the Ascential tools 
DataStage and QualityStage.

There is a different MetaBroker for each external tool, or version of that tool. The 
MetaBrokers are implemented as part of a hub and spoke architecture, in which 
a MetaBroker and its associated tool are on each spoke and the hub is the 
directory holding the integrated meta data. For example, this tool can import 
meta data from Tool A and subsequently export it to Tool B in a form that is 
meaningful to Tool B. Tool A might be a data warehouse design tool, and Tool B a 
data extraction and transformation tool. The MetaBroker lets you view data in a 
directory from the perspective of any installed MetaBroker so the data can be 
previewed before it is exported to the tool with which that MetaBroker is 
associated. MetaStage is supplied with a number of MetaBrokers, and others 
can readily be installed to provide interfaces to additional tools. See Figure 9-25 
on page 493.
492 Dimensional Modeling: In a Business Intelligence Environment



Figure 9-25   MetaBrokers: Meta data flow example

The Publish and Subscribe functions, used with the appropriate MetaBroker, 
enable movement of meta data from MetaStage to external tools. They can be 
executed from the Explorer, and provide meta data export functions to enable 
you to publicize meta data that you want to share with other users. A collection of 
meta data objects in a directory can be made available to other users by defining 
it as a publication. A user interested in the meta data in the publication creates a 
subscription to that publication. The subscription specifies that the user wants to 
export the meta data through a specified MetaBroker, and perhaps to be 
informed of any changes to the publication.

The meta data does not have to be exported to the same type of tool from which 
it was imported. It can be exported to a different tool or to a different version of 
the same tool as long as there is a MetaBroker for the target tool. In such cases, 
the target tool has its own view of the published meta data.

DataStage users, for example, might do the following:

1. Import a transform from a DataStage project.
2. Publish the transform.
3. Subscribe to the publication on behalf of another DataStage project.
4. Export the transform from this tool into the project.

The administrator allocates rights to importing and exporting, and so has control 
over who can share meta data.

MetaArchitect
When you need information from a tool for which a standard MetaBroker does 
not exist, MetaArchitect® lets you easily create custom MetaBrokers for 
importing and exporting meta data in CSV or XML format. You can create custom 
MetaBrokers based on the Common Data Subject Area model, which contains a 

MetaStageMetaBroker MetaBroker

DB2
Cube Views

OLAP Center

XML

ERwin

XML

1. Export 
ERwin XML

2. Run 
ERwin 
MetaBroker

3. Run DB2 
Cube Views 
MetaBroker

4. Import 
DB2 Cube 

Views XML
 Chapter 9. Managing the meta data 493



full range of OLAP, Entity Relational Model, Relational Data Model, and ETL 
meta data classes, or is based on the DataStage 7 MetaBroker model, which 
includes ETL and operational meta data classes. An example of a MetaArchitect 
is depicted in Figure 9-26.

Figure 9-26   MetaArchitect

Process MetaBroker
MetaStage uses a Process MetaBroker to capture operational meta data. A 
Process MetaBroker can be installed on a UNIX or Windows NT® system. 

Typically, data warehouse users may run activities to populate part or all of the 
data warehouse, or to perform other related tasks such as rollback or 
postprocessing. The Process MetaBroker keeps track of an activity, gathers 
operational meta data, and delivers that meta data to a particular directory. The 
operational meta data includes the times an activity started and ended, its 
completion status, and the resources that it accessed, such as files and tables.

To capture meta data, users access the Process MetaBroker via a particular 
proxy. Proxies are UNIX shell scripts or DOS batch files that run data 
warehousing activities and use the Activity Command Interface to define 
operational meta data about those activities.
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MetaStage contains a template proxy shell script from which you can build 
customized proxies.

Explorer
The Explorer lets you navigate a particular directory, view the attributes of objects 
in a directory and, where appropriate, edit the attributes. You can follow the 
relationships between objects and run queries to explore those relationships in 
more detail. The Explorer also includes the following components:

� Category Browser, for organizing meta data and launching imports and 
exports.

� Class Browser, for viewing class hierarchies and overlap between classes 
and the models for different tools.

� Directory Search tool, which enables you to find objects in a directory that 
match certain criteria.

� Query Builder, to build more sophisticated queries to locate meta data in the 
directory.

� MetaArchitect, is for building custom MetaBrokers.

� Object Connector and connected to functionality lets you connect objects that 
are essentially identical but which may have been imported from different 
tools. For example, a DataStage table definition that was created from an 
ERwin table.

� The ability to create Data Lineage, Process Analysis, and Impact Analysis 
paths in order to inspect and analyze the containment structure, 
dependencies, and sources of each object in the directory.

� Send to database functionality, which lets you export meta data to a separate 
set of tables in the tool directory so you can query these tables using common 
SQL query tools.

� Online Documentation tool, which lets you create, view, and share detailed 
documents describing the attributes and relationships of MetaBroker models 
and objects.

If you have administrative rights, functions in the Explorer let you handle such 
tasks as configuring the tool options, deleting data from a directory, and defining 
the access that users have to the tool functions. You can control the interchange 
of meta data among users by restricting access to the tool functions, and by 
monitoring user requests to share meta data. You can find examples of Explorer 
views in Figure 9-19 on page 486 and Figure 9-24 on page 492.
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Managing meta data in the data warehouse
Define data once and use it many times is the basic principle of managing meta 
data. Figure 9-27 illustrates a recommended overall flow of meta data among 
tools as you build the data warehouse.

Figure 9-27   Managing meta data

Start with the data model of the databases that will be populated by the ETL 
(extract, transform, and load) processes. After importing meta data to this tool, 
publish the table definitions from the physical data models and then run 
subscriptions to export the table definitions to DataStage.

Load the definitions into the DataStage job stages from the DataStage Manager 
to preserve meta data continuity once you import the job designs into this tool. 
You can also export the published table definitions to a business intelligence tool 
repository, such as a Business Objects Universe or Cognos Impromptu Catalog. 
If necessary, you can import Universe and Catalog meta data back into 
MetaStage.

And, to finish, you can publish any collection of meta data—data models, table 
definitions, impact analysis and data lineage reports— to the Web in a variety of 
formats.
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Chapter 10. SQL query optimizer: A 
primer

In this chapter, we discuss a specific Structured Query Language (SQL) and 
relational database server program capability. In particular, we discuss the role, 
behavior, and design algorithms (the technology) of query optimizers. This is an 
important topic, particularly for those who are developing and implementing a 
data warehousing environment to support your BI initiatives. Why? Because BI is 
heavily dependent on query and analytic applications, typically operating on 
huge volumes of data, for supporting data analysis. 

We need to understand the optimization process to enable acceptable 
performance and response times. And, there are other components and 
technologies involved that also must be understood. As examples, the data 
warehousing environment and the data models used to define it.

Data warehousing is all about getting your valuable data assets into a data 
environment (getting the data in) that is structured and formatted to make it fast 
and easy to understand what data is stored there, and to access and use that 
data. It is specifically designed to be used for decision support and business 
intelligence initiatives. This is vastly different from the more traditional 
operational environment that is primarily used to capture data and monitor the 
execution of the operational processes. 

10
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The emphasis with BI is on getting the data out of the data warehouse and using 
it for data analysis. As such, you will typically be working with huge volumes of 
data. You can get data out by using stored applications or ad hoc access. In 
either case, the technology, and methodology, most used for this purpose is the 
query. 

Therefore, there is an emphasis on developing queries that can get the data out 
as fast as possible. But, having fast queries is dependent on such things as how 
and where the data is stored and accessed, which is determined by the data 
model. And they are dependent on the capabilities of the relational database 
being used, in the form of the query optimizer.

Though the primary focus of this redbook is on dimensional modeling for BI, we 
have included information on query optimizers. It is through understanding these 
two areas, and enabling their integration, that you can develop a robust business 
intelligence environment.

How do you develop such an environment? You start by understanding 
dimensional modeling to enable you to create the appropriate data environment. 
Then you read this chapter to help you understand query optimizers so you can 
make best use of the data environment. Understanding the optimizer technology 
is the focus of part one, and in part two, we focus on how to apply it.

In Chapter 11, “Query optimizer applied” on page 599, we discuss the application 
of this technology This is to enable you to perform more accurate data modeling 
and develop more performant data models. In fact, it can enable you to 
determine the performance characteristics of your data model before you even 
create it. This will save significant time, and money, in such activities as data 
model creation, physical data placement and loading, index creation, and 
application development. The objective will be to “get the data model right” 
before building on, and investing in, it.

Not only is it important to know the facts and figures of a given technology, in this 
case query optimizers, it is also important to know how to work with it. After a 
brief introduction, we present a real world query optimizer example. This 
example is presented in a narrative style, and we discuss information as it was 
discovered during the resolution of an actual customer problem.
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10.1  What is a query optimizer
Before we define the term query optimizer, there are other supporting terms that 
we need to clarify. The term server is often used in an imprecise manner. It is 
used to refer to both a hardware server and software server packages and 
systems. Examples of software server packages and systems include relational 
database servers, electronic mail servers, print servers, and Web servers. The 
IBM pSeries®, formerly known as IBM RS/6000®, is one example of a hardware 
server.

Process, memory and disk components
Much like any computer program, a software server has a process component, a 
memory component, and a disk component, as depicted in Figure 10-1.

Figure 10-1   Software server architecture

In the case of a relational database (software) server, the components are 
defined as follows:

� The disk component, or disk architecture, refers to those structures that the 
relational database server software maintains on disk. You might initially think 
this is the whole point of a relational database server. However, in the case of 
a relational database server, we are typically discussing entities such as 
dbspaces, tablespaces, chunks, extents, and pages. The SQL hierarchy of 
objects, such as SQL tables and SQL indexes, reside inside these disk 
component structures. 

� The term disk component refers to that portion of the server which occupies 
or refers to persistent storage. The term disk architecture refers to the design 
of that portion of the software server.

� The process component, or process architecture, refers to the collection of 
computer programs that execute the workload on behalf of the software 
server. The two most common relational database process architectures are 
a two-process architecture, and a multi-threaded process architecture.

– A relational database server with a two process architecture maintains a 
number of persistent daemon processes which generally listen for new 
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database connection requests, manage the shared memory structures 
(the buffer pool), and so on. The phrase two process refers to user 
processes. Each active user has a dedicated back-end server process. If 
there are 200 users, then there are 200 dedicated database server 
processes (plus the daemon processes). If eight additional users connect 
to the server, then you have 208 connections, one connection per user. 
IBM DB2 UDB and Oracle 9/10g use a two process architecture.

– A relational database server with a multi-threaded process architecture 
also maintains a number of persistent daemon processes for tasks such 
as new connections requests and buffer pool management. User 
activities, however, are handled by a finite number of constant and 
dedicated server processes. Based on the precise database server 
process architecture, this number of processes might be related more 
towards the number of (hardware) server CPUs than the number of users. 
For example, 100 users and four CPUs may be handled by three to four 
user server processes. However, 200 users and four CPUs may still be 
handled by three to four user server processes. After all, a hardware 
server can only execute as many concurrent processes as there are 
CPUs.The users are represented by threads, in a pool, that are then 
executed on an available user server process. IBM/Informix IDS, 
IBM/Informix XPS, and Sybase use multi-threaded process architectures.

– IBM/Informix IDS and IBM/Informix XPS specifically use a non-blocking, 
pipelined parallel, multi-threaded process architecture. This means that 
the server processes dedicated to user activities do not call for program 
interrupts and can execute with 100% (or very nearly 100%) efficiency, in 
other words, the non-blocking part. The pipelined part means that one 
thread can send work to the next thread to perform activity 
asynchronously.

� The memory component, or memory architecture, refers to those structures 
that the software maintains in memory. Since servers can execute operations 
in parallel, this memory is most often shared memory, or, memory that is 
available to numerous and concurrent server processes. Shared memory is 
the conduit between processes, and between process and disk.
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The relational database server multi-stage back-end
Given all of this, what is a query optimizer? A query optimizer is a subsystem in 
the process architecture of a relational database server. Most relational database 
servers employ a multi-stage back-end, as shown in Figure 10-2.

Figure 10-2   Relational database server, multistage back-end

The relational database server multistage back-end is delineated in Figure 10-2 
by the four boxes entitled; Parser, Query Optimizer, Query Processor, and Other 
Libraries. While a given relational database vendor may state that they have a 
four stage back-end or a seven stage back-end, each database is performing the 
same work regardless of how these stages are drawn into various boxes.

The work performed in the multistage back-end is detailed in the following list:

Note: You might wonder why all of this attention to memory and processes 
architectures in a data modeling book. The reason is performance. You could 
create the most accurate and elegant data model possible, but if the 
supported business application system does not perform adequately then the 
project may not be successful. One other point to consider is that modern 
relational database servers observe read cache ratios in the high 90% range. 
This means that 95 to 98 times out of 100 that a data page needs to be read, 
the page is already located in a buffer pool and does not need to be retrieved 
from disk. Modern parallel database servers, in addition to being disk 
management systems, are CPU and data calculation engines.
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� Parser: Typically, the first stage in the back-end is a command parser. Each 
inbound communication request received from the user, and each request for 
SQL service, must be identified. The inbound command is read character by 
character until it is known to be, for example, an SQL CREATE TABLE 
request or an SQL SELECT (table) request. This parser may also be 
associated with an inbound SQL statement command cache, as a possible 
source of performance tuning.

There are two types of SQL commands that are observed by the parser, 
those that need to examine existing data records in some table and those that 
do not. Examples of SQL statements that do not examine existing data 
records include CREATE TABLE, INSERT (new record), and CREATE 
SCHEMA. The three most common examples of SQL statements that 
examine existing data records are the SELECT (zero or more records), 
UPDATE (zero or more records), and DELETE (zero or more records).

SQL statements that need to examine existing data records move on to the 
next stage in the multi-stage back-end, the query optimizer. SQL statements 
that do not need to examine existing records can skip the query optimizer and 
query processor stages. In the diagram depicted in Figure 10-2 on page 501, 
this is the area entitled “Other Libraries”.

� Query optimizer: Inbound communication statements, requests for SQL 
service, that arrive here in the multi-stage back-end are those that are 
somehow examining existing records in a single or set of SQL tables. SQL 
SELECT statements read data records, and their need to examine existing 
records is obvious. SQL UPDATE and SQL DELETE statements also read, 
but they are reading before the expected writing, so that they may find the 
records they are to UPDATE or DELETE. After UPDATE and DELETE find 
(read) the records they are to process, they write.

In each of these cases, the relational database server automatically 
determines how to access and locate the records that need to be read. This 
means that the invocation and use of the query optimizer is automatic.

Part of what the query optimizer determines is the (table) access method per 
each SQL table involved in the request. That is, should the given table be 
read sequentially or via an available index? In a multi-table query, the query 
optimizer also determines the table order and table join method to be used. 
The product of the query optimizer stage is a query plan. This is the plan for 
executing the request for SQL service that is being received and processed.

Note: The query optimizer is a relational database server subsystem, 
residing in the process architecture, that automatically determines the most 
optimal method to retrieve and assemble the data records that are required 
to process a request for SQL service.
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� Query processor: The query processor executes the query plan that was 
created by the query optimizer. In some advanced relational database 
servers, the query plan is dynamic and may change as the query processor 
detects errors in the query plan, or the opportunity for improvement.

The query processor may also make other run-time decisions. For example, if 
a given subset of data records is too large to sort in the available memory, 
these records may be written to a temporary table which is used as a form of 
virtual or extended memory. 

While the query optimizer and query processor are two distinct stages in the 
multi-stage back-end, you can treat them as one logical entity, which is what 
we do in this chapter.

� Other Libraries: If nothing else, the remaining stages of the relational 
database server multi-stage back-end contain the shared libraries and 
software product code. These designs are often proprietary and there is little 
value in the current context to offer or review any particular library structure.

10.2  Query optimizer by example
At this point in this chapter, we have only defined the term query optimizer. We 
have not discussed much or anything about how a query optimizer behaves. Still, 
we are now going to review a real world example involving a query optimizer. In 
this real world example, a customer is migrating from a proprietary hardware and 
software system and is observing poor (unacceptable) relational database server 
performance. Why discuss a technology in an example without first 
understanding the technology?

� It has been proven that persons retain new information better, and with better 
comprehension, when this information is presented in narrative versus 
statistical presentation. That is, you learn better by example.

� The value of query optimizer knowledge is in the application of this 
knowledge, so you need to know how to use this information. Therefore, we 
present query optimizer information by example.

10.2.1  Background 

Note: This example is real. The business description, use, and intent of the 
tables have been changed to protect the privacy of the actual customer. This 
example uses three SQL tables. The described purpose of these three tables 
may be variably changed in the example text to make specific points.
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The real world example we are reviewing happens in the time just before Internet 
applications. This company has a toll free call center, where their customers can 
place new sales orders via the telephone after reading from a printed catalog to 
determine what they want. A human sales agent listens on the phone, interacts 
with the customer, accesses various parts of a business application to gather 
data for the new sales order form, and generally works to complete and then 
place the order. Approximately 70 customer sales agents are active on the 
system, 10-12 warehouse workers are using the system to perform order 
fulfillment, and two or so additional users are running reports.

The proprietary hardware and software system is being replaced to reduce cost. 
A new hardware and software system has been purchased from an application 
vendor who has focus on (sells) this type of retail sales application. This 
packaged application had been modified to a small extent to meet whatever 
specialized needs the given company required. The new hardware and software 
system was many times the size of the older proprietary hardware and software 
system, with many years of capacity planned for growth.

After months of planning and modification, sales agent training, and so on, a 
weekend cutover was used to move data from the old system to the new. On 
Monday morning, the new system was fully in use for the first time. After the first 
few new sales orders were received, it became painfully obvious that the new 
system was performing very poorly. If the customer on the phone asked to buy a 
computer peripheral, for example a mouse, the drop down list box offering the 
various mice for sale would take minutes to populate with data, where it needed 
to be populated in under a second.

After three to four hours of panic, the problem is assumed to be caused by the 
new relational database. The relational database software vendor is called to 
identify and repair the defect in the database product that is causing this poor 
performance.

10.2.2  The environment
The problem observed seems to be one of performance. At this point, it is not 
known whether the source of performance is the (hardware) server, the network, 
the operating system, the (user) business application itself, the relational 
database server, unreasonable user expectations, or some other source. Here 
we take the role of the database vendor. Since we have already been called in, 
we begin to investigate the database server.
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Tuning SQL database servers
As mentioned, there is tuning the actual relational database server, and then 
there is tuning the user SQL statements that operate within the relational 
database server. Tuning the processes, memory, and disk of a relational 
database server is a relatively well known procedure. In our example, a database 
administrator with six months of experience could validate the performance 
tuning of a single (non-clustered, non-distributed) relational database server 
system with 500 GB of disk storage and 8 CPUs (just to give you an idea of the 
size of the system), in well under two hours of work. Among other things, you 
check the following:

� The read and write buffer pool cache ratios.

� The disk operation request queues, wait times, and high water marks.

� Disk layout. Is the disk I/O activity balanced across devices? Are data 
segments nice and contiguous or highly fragmented? and other.

� Data server events; Is activity being held or delayed for tape backup 
operations or related activities?

� User status lists; Are users waiting on locks or other resources?

� A few sanity checks; Can we connect to the database server and select data 
with reasonable performance?

� Other procedures, as determined by your relational database vendor.

Managing customer expectations
After basic checking to review adequacy of the relational database server tuning, 
there does not appear to be a relational database server tuning problem. The 
buffer pool cache is fine, all other observed statistics are fine, yet the user is 
getting performance that is unacceptable. In the actual example we reviewed, 
there were many barriers that prevented the reviewing engineer from diagnosing 
this problem in an efficient manner. 

As examples of these barriers, there was a undue amount of tension in the work 
area, and the environment discouraged rational thought. Due to these pressures, 
the customer was asking for the problem to be immediately solved, and asking 
for this to become a training event for his personnel. Even before the source of 

Note: There are two areas of relational database server tuning. One involves 
tuning the relational database server proper, its processes, memory and disk, 
and the other tuning the user (SQL programming) statements that run inside 
that relational database server. Tuning user (SQL programming) statements 
could mean tuning the actual SQL commands, or the run time (data model and 
indexes) that supports execution of these commands.
 Chapter 10. SQL query optimizer: A primer 505



the problem had been identified, the customer was looking to assign blame. The 
following is a list of actions that may aid in such an environment:

1. Information Technology (IT) engineers sometimes rush off and begin solving 
the wrong problem. Repeat the observations and assumptions back to the 
customer. For example; “If I can make the performance of this subroutine go 
from five minutes to two seconds, would that solve your problem? Is this the 
task you would like me to work on first?”

2. Every IT issue has three elements; technical, business, and emotional. 
Technical elements are those such as, “What protocol do we use to 
communicate between a client application and the server?” Business 
elements are those such as, “How much will this solution cost and what is the 
expected return on investment?” Emotional elements are those such as, “Bob 
is stupid and should not be trusted to solve this problem.”We recommend that 
you use these three indexes in communications with the customer to help 
quantify and prioritize the tasks that need to be completed. In our actual case, 
we chose to focus on the technical challenge of identifying the source of the 
performance problem.

3. Work to set reasonable expectations. In this actual case, it is paramount that 
we solve the performance problem as quickly as possible. In most cases, 
performing training while solving the problem will slow your resource down by 
a factor of three of four. So do not use this time for training, that is not the 
primary goal. The primary goal at this time is solving the performance 
problem quickly.

4. In our actual case, there was no test system on which samples or trial 
solutions could be explored. All trial solutions had to be performed on the live, 
production system. We would lose credibility if we made the problem worse or 
brought the production system down. Advise the customer of the additional 
challenges these various conditions cause, and ask for permission to proceed 
as the current environment best allows. In our actual case, we created a 
second database within the production server so that we could partially 
isolate the impact of our investigations from the production system. The 
database server software allowed for this option.

10.2.3  Problem identification and decomposition
At this point in the example, we have:

� Performed a basic review of the database server tunable parameters and 
found no obvious issues. We did this work with little or no prompting because 
the task was easy, and is a likely source of error, capable of producing a 
quick solution or return.

� Worked to start confirming assumptions, asking for and then setting priorities, 
and setting customer expectations.
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With more attention and detail than before, we ask the customer to demonstrate 
the problem. In our actual case, an operation performed inside the business 
application is to populate a drop-down list box (a specific graphical control within 
a data entry screen form) with data. The customer sales agents logged in to the 
database with distinct user names. This made identifying and tracing the specific 
SQL commands being executed by a given user and at a specific time, an easy 
task. When users log on to the database using a connection concentrator, or 
database session pooling mechanism, this task becomes much more difficult. 
When pooling is in effect, distinctly named users are recognized by the database 
server software by a single or smaller set of shared names. Figure 10-3 displays 
some of the information that is discovered at this time.

Figure 10-3   Results of investigation at this time

Gather statistics on tables involved in the query
By using the database server software diagnostic utilities, we confirmed that 
opening the graphical user application program drop-down list box executes a 
three table SQL SELECT statement. We captured the specific SQL SELECT 
statement syntax. Then we executed the same SQL SELECT statement on a 
non-graphical, non-networked, terminal window and observed the same poor 
performance. This was a significant achievement. We removed many variables 
from the test case, and captured a repeatable test. Our test produced the same 
data in the same amount of time as the users. Add the following:

� The actual table names and column names will be obscured from this 
example. The actual table and column names are those such as 
“dsxggprtst11”. Names that made no sense to a person who has no 
experience with this application.
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� The number of records (rows), columns, indexes, and physical disk space 
allocations (extents) is displayed in Figure 10-3 on page 507. This is all data 
we were able to discover, given the SQL SELECT statement, the table 
names, and other information.

� The query returned about 700 records in an average of three to five minutes, 
which equals two to three records a second. Given the small table sizes, two 
to three records a second is very poor performance.

Reading a text presentation of a query plan
Most relational database software includes graphical and/or character-based 
administrative interfaces to retrieve the query plan of a given SQL statement. 

Note: Page Corners. All relational database vendors have the concept of page 
corners, although the specific term used by a vendor for this condition may 
vary. All vendors recognize some term which represents the smallest unit of 
I/O they will perform when moving data to and from memory and disk. We call 
this unit a page. Generally, a vendor will place as many whole data records on 
one page as will fit. The data record has a length in bytes, the page has a 
length in bytes, and only so many whole records can fit on a page. The vendor 
will not unnecessarily split a single record across two pages to make 
maximum use of (disk) space. Whatever space is left unused due to this 
condition is called the page corner. Why not split data records across pages 
unnecessarily? That would subsequently require two physical I/O operations 
to retrieve a record when only one could have sufficed. The answer is to 
preserve system performance (over disk consumption).

In an SQL table with fixed length records (no variable length columns), the 
page corner will be the same on all full pages. We say full pages, because a 
page with unoccupied record locations will have additional unused space.

Figure 10-3 shows that table-A has a record length of 1223 bytes. If the page 
size for this system is 2 KB (2048 bytes), then 800 or so bytes are left unused 
on every data page allocated for that table. If there were 300 or so fewer 
commonly used bytes in a table-A record, we could possibly gain some 
performance by expelling those bytes to a second table, and observing more 
table-A records per page on the more commonly used columns. This physical 
data modeling optimization is generally referred to as expelling long strings.

Variable length records have issues too. Some vendors will leave as much free 
space on a data page to allow for any single data record on the page to 
achieve its maximum length. If the page size is 2 KB, and the maximum length 
of a given record is also 2 KB, you may get one data record per page even if 
the average variable record length is only 80 bytes.
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Example 10-1 displays the query plan from the current three table SQL SELECT 
that is being reviewed.

Example 10-1   Character-based administrative interface showing this query plan

0001 
0002 --  This file has been edited for clarity.
0003 
0004 QUERY:
0005 ------
0006 select 
0007       ta.*, tb.col001, tb.col003, tc.*
0008    from
0009       table_a ta,
0010       table_b tb,
0011       table_c tc
0012    where
0013       ta.col001 = “01”
0014    and
0015       ta.col002 = tb.col001
0016    and 
0017       tb.col003 = “555”
0018    and
0019       tb.col003 = tc.col001
0020 
0021 OPTIMZER DIRECTIVES FOLLOWED: 
0022 
0023 OPTIMZER DIRECTIVES NOT FOLLOWED: 
0024 
0025 Estimated Cost: 407851
0026 Estimated # of Rows Returned: 954
0027 Temporary Files Required For:
0028 
0029   1) Abigail.ta: INDEX PATH
0030 
0031     (1) Index Keys: col001 col002 (Serial, fragments: ALL)
0032         Lower Index Filter: Abigail.ta.col001 = ‘01’ 
0033 
0034   2) Abigail.tb: INDEX PATH
0035 
0036         Filters: Abigail.tb.col003 = ‘555’ 
0037 
0038     (1) Index Keys: col001 col002 col003 (Key-Only) 

(Serial, fragments: ALL)
0039         Lower Index Filter: Abigail.ta.col002 = Abigail.tb.col001 
0040 NESTED LOOP JOIN
0041 
0042   3) Abigail.tc: INDEX PATH
0043 
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0044     (1) Index Keys: col001 (Serial, fragments: ALL)
0045         Lower Index Filter: Abigail.tb.col003 = Abigail.tc.col001 
0046 NESTED LOOP JOIN
0047 

By reading the query plan displayed in Example 10-1 on page 509, we can see 
the following:

� Lines 006-0019; The SQL SELECT statement, which we captured earlier, is 
repeated. 

– table_a.col002 joins with table_b.col001, line 0015.

– table_b.col003 joins with table_c.col001, line 0019.

– All three tables join, A with B, and then B with C. That is good because 
there are no outer Cartesian products, a condition where some tables are 
not joined. 

– Lines 0029, 0034, and the 0042 give us the table join order; that is, that 
table A will be processed first, then table B, then C.

– Tables A and B both have filter criteria. For example, WHERE Ship_date 
equals TODAY, WHERE Customer_num = ‘100’. 

– The table A filter is displayed on line 0013. The table B filter is displayed 
on line 0017. Both filters are based on equalities.

– Filters and/or joins could be based on equalities, ranges, or other set 
operands (strings and wildcard meta-characters for one example). A 
range criteria would be similar to: WHERE Ship_date > “09/02/1974” AND 

Note: It is hard to find a real world application of an outer Cartesian product, 
since this results in a costly projection of one data set onto another without 
relation or care. For example, an outer Cartesian product of the 
Valid-Instructors table onto Valid-Courses table returns Instructors with 
Courses they do not have any relation to. This is a good way to generate 
voluminous data that is of little use. Bob cannot teach the Home Economics 
course, because Bob is a Computer Software Instructor.

Outer Cartesian products can exist for valid reasons, but their presence is 
extremely, extremely rare. They are so rare, that their presence should be 
considered a possible indicator of an error in the data model. And, a relational 
database product could show an application error upon receiving an outer 
Cartesian product. Outer Cartesian products generally occur between two 
tables, and are optimized by creating a third table to act as an intersection. For 
example, a Courses-Taught-by-these-Instructors table indicating which 
Instructors can teach which Courses, from the example in this block.
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Ship_date < “09/09/1974”. Generally, equalities are preferred over ranges 
because fewer data records satisfy the criteria, and therefore fewer 
records are processed. 

� Lines 0021-0023; query optimizer directives.

– Be default, the query optimizer uses the algorithms it contains, and certain 
information about the tables and resultant data sets involved to form the 
query plan. This work is automatic.

– Optionally, the relational database vendor may offer the ability to override 
or influence query plans by a technology generally referred to as (query) 
optimizer directives, or (query) optimizer hints. Some vendors offer the 
ability to promote and/or discourage certain query paths, other vendors 
can only promote or discourage, but not both. Optimizer hints are used 
during those few occasions when the automatically determined query plan 
just does not perform, and a human operator can specify a better plan.

– Generally, optimizer directives are specified by embedding specifically 
formatted strings inside the SQL command text.

– The topic of optimizer directives is expanded upon in “Query optimizer 
directives (hints)” on page 584.

– No query optimizer directives were in effect for the execution of this query, 
as you can see by the absence of observed text between lines 0021-0023.

� Lines 0025-0026 display the estimated cost and number of rows (records) 
returned. Generally, if the cost goes down while you are tuning a specific 
single SQL statement, that is good. It is often less productive to try and 
compare costs between differing SQL statements or attempt to calculate 
expected run times from this data.

� Line 0027; temporary objects.

– Generally, each relational database vendor has two categories of 
temporary objects. Here we define these objects to be temporary tables 
and temporary files.

– We define temporary tables to be those temporary structures which are 
explicitly requested. For example, CREATE TEMPORARY TABLE, or 
SELECT ... INTO TEMP TABLE.

– Temporary tables tend to be private in scope, meaning they are viewable 
(readable, writable) within the single user session which created the 
object. Temporary tables are generally released when the user session is 
terminated (closed), but the capability of a specific relational database 
vendor may vary here.

– We define temporary files to be those temporary structures which are not 
explicitly requested. The most common use of temporary files tends to be 
for sorting. For example, a given user session needs to sort 1 GB of data, 
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but is only allowed to use 5 MB of memory, so data overflow will occur to 
some sort of non-memory related structure. That non-memory structure 
has to be a disk space allocation. We are calling these allocations 
temporary files, although your specific vendor’s name for this resource 
may vary.

– Sorting data is generally the cause of temporary files (implicit disk space 
allocation used for query processing).

– Sorting inside an SQL statement can occur for many reasons.

� Line 0029 lists the first table to be processed in the execution of this query, 
table A. Table B is second, line 0034, and table C is last, line 0042. This 
condition is referred to as the table order.

� Line 0031 details how table A is accessed, and this data is referred to as the 
table access method (for table A).

– The two most common table access methods are sequential scan and 
indexed retrieval. 

– The text “Index keys: col001 col002” means that this table is being 
accessed by a SQL index which exists on columns col001, col002 in this 
table. This index happens to prevent duplicate key values, as detailed in 
Figure 10-3 on page 507, above.

– Database servers can perform operations using multiple concurrent 
processes (threads) or not. Non-parallel operations are called serial 
operations. Access of this table, table A, is done serially as denoted by the 
presence of the “Serial” keyword on line 0031.

– Parallel operations are not automatically faster than serial operations. In 
the case of this query, the data sets as so small (as determined by the 
small records counts), it is likely this query would not run faster if executed 
in parallel. This could however be an area to research in the solution of 
this problem.

– Relational database vendors can also physically place records on the hard 
disk via a more optimal algorithm than random placement. This specific 
vendor can create distinct, pre-organized allocations of data records by 
key value and other schemes. This vendor calls these individual physical 
allocations fragments. Fragment elimination is a term for the nearly zero 
cost ability to reduce the effective physical size of the table, by 
determining that given fragments do not satisfy the query criteria by the 
rules in effect for the storage of that table. For example, given a list of 
world citizens organized by continent where each continent’s list is stored 
on a separate disk (fragment), we need only examine one of seven 
fragments if we know the records we need reside in the Czech Republic 
(Europe). The database server knows these constraints without having to 
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examine actual data records. The database server knows this by the rules 
it maintains.

– Line 0013 contains the text, “fragments: ALL”, which means that 
organization of data for the table did not make use of this feature, or that 
no fragments could be, or needed to be, eliminated based on the query 
criteria.

– Indexes contain key columns, the members or columns which reside in 
that index. Indexes contain data that is presorted in ASCII collation 
sequence, for example, alphabetically or in number sort order. The data in 
the table is generally assumed to be in random sequence. Indexes are 
always presorted based on an algorithm determined by the index type.

– Indexes may be read in ascending or descending order. Line 0032 states 
that this index is to be read in ascending order. That specific point is of 
little value.

– Line 0032 also states that this index is being read in order to satisfy a filter 
criteria equal to “ta.col001 = ‘01’”.

– From the data in Figure 10-3 on page 507, we know that the SQL table 
column ta.col001 is of data type CHAR(02). Generally, relational database 
servers join or evaluate strings (character columns) by performing two 
byte character comparisons for the length of the string. This operation is 
measurably less CPU efficient than say, joining integer values. If ta.col001 
can be restricted to containing integer data over character, a degree of 
performance could be gained when performing certain operations. Having 
to join character data versus integer data adds to the join cost.

� Line 0034 begins the description as to how table B is accessed, also a table 
access method. This next list of subpoints mentions only new technologies, 
those which were not discussed when reviewing table A.

– Line 0038 contains the text, “Key-only”, and this refers to a modifier as to 
how the given index on table B is being used.

– Generally, indexes are read to find an index key value (Customer_num = 
‘101’, for example). This single entry in the index data structure also 
contains the physical address on disk of the associated full data record in 
the SQL table proper, (where the remaining columns of this full record 
reside for Customer_num 101). In most cases, the index is read to find the 
address of the remainder of the data record, and then the full data record 
is read.

 Note: The term query criteria refers to those conditions in the WHERE 
CLAUSE of an SQL statement, both the joins and the filters.
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– The term key-only means the query processor did not need to perform this 
work. All of the columns needed for the given task were members of the 
given index, the query processor does not need to go to the table proper to 
get (other) columns.

– Obviously key-only (index) retrievals are more efficient than standard 
index retrievals, as less work needs to be performed. The work in question 
is a reduced amount of physical or logical disk I/O.

� Line 0040 contains the text “NESTED LOOP JOIN”.

– Thus far we have discussed table access methods and said there is a 
sequential scan disk access method, and an indexed table access 
method. There are also other table access methods, discussed in “All 
table access methods” on page 537.

– A table access method details how the given records contained within one 
SQL table are processed.

– Line 0040 displays the table join method. A table join method details how 
records from one table are then matched with their counterparts in a 
second, or subsequent table.

– From our current example, and in a nested loop (table) join method, table 
A is read via an indexed table access method. Although it could have been 
indexed or sequential, it does not impact the table join method in this 
context. As each row is read via the index on table A, the filter criteria is 
applied (line 0013). As each row passes this filter (test), the row is then 
matched to any and all rows that match in table B, based on the join 
criteria line 0015, however table B is being accessed.

– The nested loop table join method gets its name from the software 
language programming construct which is used to create this program 
code, namely a recursive (nested) loop.

– Table A is joined to table B using a nested loop join method, as stated on 
line 0040. Table B is joined to table C also using a nested loop join 
method, as stated on line 0046.

– Generally, a given relational database vendor has three or more table join 
methods. Nested loop join method is the oldest, and under the proper 
conditions, the fastest. Sometimes nested loop is not the fastest, which is 
documented later in “All table join methods” on page 541.

� Line 0042 begins the listing for table C. No new technology is displayed after 
line 0042.

� To summarize, here is the primary data we need to track:

– The tables are processed in the order of table A, then B, then C.
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– Tables A and C are accessed (table access method) via a unique index 
scan. That is, records in tables A and C are located via a unique index and 
an equality in the SQL SELECT WHERE clause. 

– Table B is also accessed via an index, although that index is an index that 
permits duplicate values. As a modifier, the indexed retrieval into table B is 
key-only. A key-only retrieval is one where all of the necessary columns 
(all of the columns we are being asked to read) are members (elements, 
attributes) of the given index. Normally, an index retrieval accesses the 
key columns of an index, in order that we may locate the full width data 
record in the table proper. A key-only retrieval has all of the columns it 
needs in the index itself, thus avoiding a table lookup.

Create a query plan diagram
Figure 10-4 provides a graphical depiction of the query plan for this example. 
Only the most important elements of this query are displayed. It would be an 
important skill to be able to draw a diagram of this type from your specific 
relational database server query plan display.

Figure 10-4   Graphical depiction of query plan

Thus far we have determined:

� The query has three tables of small size. (Finding the query through 
administrative tools, reading the tables’ sizes, specific structure, and disk 
space allocations through administrative tools.)

The query plan followed the table order, Tables “a”, “b”, then “The query plan followed the table order, Tables “a”, “b”, then “c”c”..
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� All three tables are joined. (Reviewing the syntax of the SQL SELECT.)

� All three tables are accessed using an indexed retrieval. (Reviewing the 
query plan, specifically the table access methods.)

� We see that there are not temporary files or tables being used, which can 
delay query processing. Absence of these structures observed from the query 
plan.

� We have executed the query in a simple manner (from a character-based 
terminal program). We have observed the server returns on average 700 
rows in three to five minutes, in other words, two rows per second, on 
average, from very small tables.

� We have already eliminated the likelihood that slow network traffic is to 
blame. If there were remote SQL tables, we would copy all of the tables to a 
single, local database server and repeat the perform tests. (The tables were 
small and we have available disk.) Also, the test was, as stated above, run 
from the hardware server console.

� We have already eliminated the likelihood there is multiuser delay due to 
locks, lock waits, or dead locks, by viewing the database server 
administrative status reports.

� We still think we can do better.

10.2.4  Experiment with the problem
At this point we are going to experiment with conditions in the run-time 
environment, specifically those called for in the syntax of the SQL SELECT 
statement. Because this is an operational and production system, and because 

Note: We could check to ensure that these indexes are not corrupt, by a 
number of means. Generally, corrupt indexes do not occur in modern 
relational database server systems. Most commonly, corrupt indexes give 
incorrect results, or never return from processing. Corrupt indexes do not 
display poor performance and correct results. One easy way to check to see 
whether or not an index is corrupt is to perform a specific query using a 
sequential (non-indexed) retrieval. Then compare these results to those using 
an indexed retrieval.

Note: When you have something that is not working, remove conditions from 
the test case until something changes. In our case, we have a three table SQL 
SELECT that is not performing adequately. The third table, table C, provides 
little value. For experimentation only, remove table C from the query and see 
what happens.
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these tables are small (we have the available disk space), we create a copy of 
these three tables somewhere outside the current database. (The server product 
allowed for numerous and concurrently operating databases inside one software 
server. Before proceeding, we re-execute the test case (the SQL SELECT) and 
compare data results, query plans, and execution times to help indicate that we 
copied this example run-time environment correctly.

Drop criteria from the query
The current problem is that a small three table SQL SELECT seems to be 
performing below expectations. We do not know what is causing the problem, so 
we are going to change the SQL SELECT statement and see what happens. 
Table C is joined to the products of table A and B, via an equality on a single 
column that has a unique index placed upon it. Table C is processed last and has 
only 600-700 records. As a result, table C will be removed from the query for the 
purpose of research. If we cannot get the two table SQL SELECT of just tables A 
and B to perform adequately, then we have little hope of making the original 
three table SQL SELECT perform.

Figure 10-4 on page 515 shows the query plan as it currently executes, and with 
the final criteria it needs to logically contain. Figure 10-5 displays the query plan 
after table C was dropped for investigatory purposes.

Figure 10-5   Altered query, just tables A and B
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� Table C is truly low cost. The total query execution time went from an average 
of five minutes, to four minutes and 40-50 seconds. This is not a significant 
change, considering the customer needs sub-second performance.

� The table order remained table A then table B. This may also be useful. If the 
table order changed to table B first then table A, and also produced an 
acceptable performance result, then we may have trouble recreating this 
behavior when we reattach table C to the query. One could join table B to 
table A, then join this product to table C. With several (ten or more) tables and 
several discontiguous table join orders, this may encourage the implicit use of 
temporary files which would negatively impact performance.

� What we have now is a two table SQL SELECT that does not perform 
adequately, perhaps a simpler problem to research.

Measure filter selectivity
With the more simple two table SQL SELECT, we are going to measure the 
tables separately and then measure them together. From the data presented in 
Figure 10-3 on page 507, we already have some knowledge of table A. 
Figure 10-6 displays what is learned when we measure the selectivity of the filter 
on table A.

Figure 10-6   Measuring just the filter on table A

Table A is listed as having 70,000 rows. This can be confirmed by many means 
including an SQL SELECT similar to: 

SELECT COUNT(*) FROM table_a;

Figure 10-6 displays what we learned from executing a SQL SELECT equal to:

SELECT COUNT(*) FROM table_a WHERE col001 = ‘01’;

Basically, we just copy the predicates (filters) which are in effect on table A, and 
change the column list to perform a count. This query informs us that the single 
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filter on table A is not very selective, returning on average 98% of the entire 
contents of table A.

Index utilization guidelines
As we mentioned previously, part of what the query optimizer determines is table 
order. In this example, should the query processor read table A first, then B, then 
C, or perhaps tables C, then B, then A, or another choice? Part of what the query 
optimizer considers when determining table order is selectivity of the filters. 
Table order is affected by many things. However, in the area of just selectivity of 
filters, read the following:

� Here we are using the example of a telephone book, a sorted listing of 
persons. It contains last name, first name, gender, their telephone number, 
and perhaps other data.

� One can sequentially read the telephone book, page after page, to find the 
entry needed. This is a sequential scan, one of the table access methods.

� Data in the phone book is sorted, and for this example we will imagine this 
condition of having the presorted data to be our index. Most phone books are 
sorted by last name, then first name, and so on. For this example, we will 
state that the phone book can only be sorted on one column of data.

� If the phone book is sorted on last name, but not any other column (because 
we are imposing a single column sort order limit), we would locate a male 
named “Bob Jones” in a manner similar to:

– This phone book is many hundreds of pages thick. Knowing that the last 
name is Jones, and that this phone book is sorted by last name, we open 
the phone book somewhere in the middle. We know the letter J is close to 
the middle of the alphabet.

– Paging not by single pages, but by dozens of pages we locate the start of 
the J page. Even then, the last name starts with “Jo” (Jones), not “Ja”, or 
“Jb”, so we still page many pages at a time to find the listing for all persons 
with a last name of Jones.

– This phone book is sorted only by last name, so while we are at the start of 
a list of male and female persons with the last name of Jones, the name 
we seek could be last in this list. This list is not then subsequently sorted 
by first name or by gender. We perform a sequential scan within Jones to 
find Bob, and then Bob Jones, a male.

Note: In this context, index utilization guidelines does not refer to when the 
data modeler should use (create) indexes. Index utilization guidelines refer to 
the conditions that allow for or prevent the query optimizer from using indexes.
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– In an actual SQL database, we have used the index to position at the start 
of the list of all persons named Jones, then we had to go to the SQL table 
proper to read each first name and gender. In this example, the first name 
and gender were not members of the given index.

– While this phone book contained 1,000,000 persons total, there were only 
10,000 persons with a last name of Jones. By using the last name index, 
we avoided some amount of workload between sequentially scanning 
1,000,000 records, or performing an indexed read of 10,000 index key 
columns, and then looking up the remaining (non-key) columns in the 
table proper by their absolute disk address.

� Now let us change the example to one with a different selectivity.

– Let us say that the phone book is not organized by last name but is 
organized by gender (male or female). We know Bob is a male so we can 
position at the start of the list of males, then go to each record sequentially 
and see if the name is Bob Jones.

– This option would give us measurably more work to perform. As a filter, 
the gender code is measurably less selective than last name. The amount 
of physical or logical disk I/O to perform on a list that is sorted (indexed) by 
gender, a less selective filter, is higher than a list that is sorted (indexed) 
by last name.

– We need to tie selectivity of filters and their effect on table order with other 
concepts which are not defined here. This work will be done shortly. At this 
time we can state that for now, all things being equal, preference is given 
to the filter with the greatest, most unique, selectivity.

� If you wish to state that the phone book example is too simplistic, or too rigid, 
to be of real value, consider the following:

– Why not just create a phone book which is sorted by last name, then first 
name, then gender (this is called a concatenated, or multi-column index)? 
Concatenated indexes have issues too. Consider a phone book that is 
sorted by last name, then first name, then whatever else. To find a person 
in that phone book whom you only know has a first name of Bob, (you 
don’t know the last name), you lose the index and have to perform a 
sequential scan.

– In short, concatenated indexes do not solve every problem. Concatenated 
indexes have limits equal to or greater than non-concatenated (single 
column) indexes.

As stated in the note box above, the subsection title “index utilization guidelines” 
does not refer to when you should create indexes. It refers to when the query 
optimizer can make use of indexes.
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B-tree+ indexes defined
We have been discussing index use, without really defining what indexes truly 
are or how they function. There are several types of indexes, and thus far we 
have been discussing a type of index called a b-tree+ index without bothering to 
label it as such. Figure 10-7 on page 522 provides a graphical depiction of a 
b-tree+ style index.

Note: The specific condition that was just discussed, (finding a person in a 
phone book by first name when the phone book was sorted (indexed) by last 
name, then first name), is called negation of index, non-anchored 
composite key. The last name, then first name index can not serve a first 
name only filter criteria because this index is not headed (anchored) by first 
name. Imagine trying to find all first names of Bob in a phone book. You would 
have to sequentially scan the entire book. A negation of an index means that 
an otherwise usable index is disallowed due to a condition. 

Another negation of an index is negation of index, non-initial substring. 
That is, given a phone book sorted by last name try finding everyone in that list 
where the last name ends with “son”, such as in Hanson, Johnson, 
Williamson, or Ballardson. To perform this search, you would have to 
sequentially read the entire phone book. The index (in this case sort) column 
is not organized by the last three characters of the last name. It is anchored by 
the leading character of this string. When you lose the leading portion of an 
indexed string, you negate the effectiveness (use) of the index.

This is another reason not to violate the first rule of third normal form, which is 
do not concatenate related columns. If the last three characters of this column 
have meaning, then it is a separate entity attribute (column) and should be 
modeled as such. As a separate column, it can be indexed. (To be fair, some 
relational database vendors allow you to index a non-initial substring of a 
given column. Still, this feature often needs to reference a static range. For 
example, index character positions five through eight, for example; not the last 
three characters of a variable length data value.)
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Figure 10-7   Graphical depiction of a b-tree+ type index

B-tree+ style indexes resemble a tree, and represent a standard hierarchy. All 
access of a b-tree+ style index begins at the root level. B-trees use the analogy of 
natural wooden trees and have terms such as root, branch, twig, and leaf 
(nodes), as in the following list:

� Given a list of numbers in the range of 1 to 1,000,000, the root would contain 
as many entries as can fit on the (index data) page. The root node would say, 
for example, rows with a key value of 1 to 100,000 are located next at some 
address, rows 100,001 to 200,000 are located at some other address, and so 
on.

� Generally any entry in a b-tree+ index contains a single set of column values 
which are the keys, and an absolute disk address of the structure to which 
this entry in the index refers.

� Prior to the final (leaf) level of a b-tree+, entries point to further deepening 
entries in the tree; roots, then branches, then twigs, and then leaves.

� By traversing a b-tree+ index, we eventually arrive at the leaf node, which 
then points to the address of a row in the SQL table proper.

� The SQL table proper contains all columns found to exist within the table, not 
just the non-indexes column. In this manner, the table can also be 
sequentially scanned to arrive at any row or column.
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� As any single page in the index structure becomes full, it cannot accept 
additional entries. At the time of this event, the page will split leaving two 
pages where one existed previously. Consider the following:

– By default, a single full page may split into two equally (half) full pages, 
leaving room for growth on both.

– If however, you are only adding new records at the end of a range of data 
(you are only adding increasingly larger numbers), you would be leaving a 
wake of half full and less efficient index data leaf pages.

– All modern relational database servers are intelligent enough to detect 
index data leaf pages that are split in the middle or at the end of a range of 
data, and to behave optimally. This specific capability is referred to as 
having a balanced b-tree+.

� Because of the cost of having to perform logical or physical disk I/O on the 
b-tree+ with its many levels, and then still having to go to the SQL table 
proper to retrieve the remaining columns from the table, the query optimizer 
considers the selectivity of the index when deciding whether or not to use the 
index or to discard the index use going instead with a sequential table scan.

� As a very rough guideline, if the query optimizer believes that the query 
criteria (join or filter) of an indexed column will return one-third or more of the 
contents of a table, that index is not used in favor of a sequential scan. This is 
a working guideline only.

� The “+” in b-tree+ refers to a capability that the index can be read in both 
directions, both ascending and descending. 

– B-tree+ index is either sorted in ascending or descending order at the leaf 
level. 

– Many years ago, an ascending index could only be read in ascending 
order, not descending. Descending indexes could read in descending 
order, not ascending.

– Index data leaf pages contain a pointer (address) listing the next leaf page 
in the contiguous chain of index data.

– Many years ago, these index data leaf pages only contained a pointer to 
the next leaf page. Now they contain a pointer to the next and previous 
index data leaf page. This capability adds the “+” to the b-tree+ index 
name.

Note: The specific condition that was just discussed, (not using an index 
based on its poor selectivity relative to the query criteria), is called negation 
of an index, (poor) selectivity of filter. An otherwise usable index may not 
be used because it would be more efficient to sequentially scan the SQL table 
proper.
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Data distributions
We have seen that the table access method for table A is indexed retrieval. And 
we have seen that the selectivity of that filter is poor, meaning that better 
performance would be observed if the index were not used in favor of a 
sequential scan. We can force a sequential scan of table A using (query) 
optimizer hints, but that still will not solve our overall problem. We seek to get the 
total execution time of this query from three to five minutes to sub-second. A 
sequential scan of table A will save some time, it will not satisfy our objective.

Why did the query optimizer make this error? The query optimizer uses general 
rules, and observed statistics about the involved tables to determine the query 
plan. The query optimizer generally gathers these table statistics on command, 
not automatically. Gathering these statistics can be costly. While statistics had 
been gathered prior to executing the query in our test case, we were gathering 
the minimal amount of statistics. Because of the cost of gathering statistics, most 
relational database vendors will gather increasingly complete levels of statistics. 
Figure 10-8 provides a representation of data by distinct value and the count of 
records per value.

Figure 10-8   A distribution of data by value and count

From the diagram in Figure 10-8, we see that the data value “CE” carries the 
majority of data by count, while the data value “SP” carries little or no data by 
count. Refer to the following:

� If we were to evaluate a filter criteria equal to “WHERE value = ‘CE’”, that 
application is not very selective. If we were to evaluate a filter criteria equal to 
“WHERE value = ‘SP’”, that application is very selective.
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� When query optimizer statistics are gathered at the default level in this 
vendor’s relational database server product, it gathers, among other things, 
the following:

– The number of records in a table.

– The number of unique values in each index.

– The maximum, second maximum, minimum, and second minimum value 
in each index key value range.

� Under default conditions, the vendor would know the total number of records, 
and the number of distinct values. In this case, six.

� Under default conditions, most relational database server vendors assume an 
even distribution of data. Meaning from our example, we would expect that 
each of the values in Figure 10-8 on page 524 carries 1/6 of the total number 
of records on the table. Assuming an even distribution of records is fine if the 
records are evenly distributed.

� Data distributions is a relational database server capability where the data 
is actually sampled to determine the spread (selectivity) of values across a 
range. Most vendors allow the administrator to determine the percentage of 
data records that are read to gather a distribution.

� In this example, the server could know in advance to use a sequential scan 
table access method when receiving a “WHERE value = ‘CE’”, and possibly 
to use an indexed retrieval when receiving WHERE value = ‘SP’”, or at least, 
given the choice of which filter to execute first, which is more selective.

� Data distribution can be gathered on any column, whether or not it is an 
element of an index.

Query optimizer statistics
In the three table SQL SELECT example, table A is accessed via a unique index. 
That is, one that does not permit duplicate values. Table A contains 70,000 
records, so this index contains 70,000 unique values. The entire index is unique, 
yet the SQL SELECT, counting the filter criteria displayed in Figure 10-6 on 
page 518, returns 98% duplicate values on an equality. How is this possible? The 
filter criteria for this SQL SELECT accesses a subset of this composite index, 
only the leading single column of a two column index. Column one of this index is 
98% duplicate. The entire width (both columns) of this index is unique.

This vendor default query optimizer statistics gathering behavior looks only at the 
uniqueness of the entire width of a composite index. Some vendors look at as 
many as six column deep into a composite index by default. In either case, a 
query optimizer statistics gathering that examines the data distribution of the 
leading column of the index solves the problem of whether to use an index or go 
sequential on the current query plan for this query.
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Measuring the cardinality between tables that are joined
Currently we know that the table access method being used for table A could use 
improvement. Still, that correction alone will not solve the overall problem. 
Therefore, we continue to perform additional investigation. We could either 
measure the selectivity of each of the remaining filters, or simply follow the table 
join order as the SQL SELECT would be executed by the query processor. Both 
activities are valid in either order. Since the join may also restrict record counts 
(there may not be a matching record found to exist in table B that matches with 
table A), we will follow the query plan table join order.

To measure the cardinality between two tables, execute a SQL SELECT in the 
manner shown in Figure 10-9.

Figure 10-9   Query to measure cardinality between two SQL tables

Note: There are many specific applications of data distributions, to include:

� To examine the uniqueness of a subset of a composite (multi-column) 
index, greater than what the default query optimizer statistics will gather.

� To examine the uniqueness of columns used in filters and joins. For joins, 
this uniqueness is a large indicator of the cardinality observed between the 
two joining tables. These columns may, or may not, be indexed.
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(col1,col2)(col1,col2)
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Given states or provinces within a given country, the SQL SELECT displayed in 
Figure 10-9 on page 526 would return the state/province primary key, and a 
count of cities in that state/province. This is a basic construct to measure 
cardinality between two tables.

In our current example, table A contains 70,000 records, and table B contains 
840,000 records. This record counts are accurate from the real world example. In 
the real world example, each table A join column value would match with 
somewhere between 8 and 4000 records from table B, producing an 
intermediate product set, the product of joining table A to table B, of millions and 
millions of records. If millions and millions of records are produced from this join, 
and the final query returns only 700 records, where do these records go? Where 
are they discarded? Figure 10-10 answers that question.

Figure 10-10   Count of both tables with all filters

Figure 10-10 displays the two table query, with tables A and B joined, and with all 
filters applying to tables A and B being present. The filter on table B is very 
selective and reduces the number of records produced when joining tables A and 
B to a final result size of 700 records. The filter on table B is definitely the filter 
that should be executed first, before table A. Beginning the query processing with 
a table order of table B before table A, reduces the number of total records 
processed by several orders of magnitude.

Note: It is important to understand that the query optimizer made the optimal 
query plan given the conditions that exist in the run-time environment. The 
primary fault of the query execution time is related to the data model.

col1   CHAR(02)col1   CHAR(02)
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Unique IndexUnique Index
(col1,col2)(col1,col2)
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Before moving on to a solution, Figure 10-11 displays an interesting behavior to 
this query that was not previously discussed.

Figure 10-11   Disk I/O versus record retrieval graph

Explaining misleading server tuning behavior
As part of the earlier investigations, we had examined disk I/O rates and queues. 
The system in this real world example had eight (count) SCSI type III hard disks. 
All three of the tables in this example were located on one disk. We could have 
achieved a small amount of improvement in performance by spreading these 
tables across several disk drives or controllers. 

The database server software was reporting a very consistent rate of 150 
physical disk I/O operations per second, which is average for a SCSI type III 
drive. What was odd was another behavior. We created a ten line computer 
program to execute a SQL FETCH loop for this three table SQL SELECT. This 
SQL FETCH loop would return a few records and then pause for many seconds 
or sub-seconds; the loop returned one record at a time as SQL FETCH loops do. 
Until the data gathered in Figure 10-10 on page 527, we were at a loss to explain 
this stop and start SQL FETCH loop behavior. 

The query was executing at a constant and fast rate. The delay in query 
processing (as witnessed by the delays in the iterations of the SQL FETCH loop), 
was evidence of the number of records examined, filtered, and joined between 
tables A and B, only to be discarded by the filter on table B. We are processing 
hundreds of thousands of records only to produce 700. This is our major 
optimization that will reduce the total query execution time from minutes to 
sub-second.
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10.3  Query optimizer example solution
Here we present the solution to the query optimizer example that began in 10.2, 
“Query optimizer by example” on page 503. Figure 10-12 once again displays the 
original query plan for this example.

Figure 10-12   Original query plan from example

It is the filter on table B which should be executed first based on the selectivity of 
that filter. This same filter greatly reduces the number of records that need to be 
joined from table B into tables A and C. The query optimizer is prevented from 
taking this query plan because of the run-time environment.

Note: The query optimizer will do nearly anything so that it may complete your 
request for SQL service. One thing the query optimizer will not do is 
sequentially scan two or more tables inside one SQL SELECT, nor will it 
sequentially scan the second or subsequent tables in the table order. 
Sequentially scanning the second or subsequent tables in a SQL SELECT 
means that table, or tables, would be sequentially scanned numerous 
(repetitive, perhaps hundreds of thousands or millions of) times. That is 
generally not happening, because performance would be grossly 
unsatisfactory.

The query plan followed the table order, Tables “a”, “b”, then “The query plan followed the table order, Tables “a”, “b”, then “c”c”..
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The join criteria from table B to table A is on table A col003. Table A col003 is not 
indexed. If the table join order in this query were table B, then table A, then each 
of 700 records in table B would cause a sequential scan in table A. In order for 
the query optimizer to consider a table B then table A table join order, the join to 
table A would have to be served via an indexed retrieval. Currently, there is no 
index on table A that supports this behavior, and that is why the query optimizer 
will not choose table B first.

10.3.1  The total solution
The total solution to the three table SQL SELECT example begun in 10.2, “Query 
optimizer by example” on page 503 contains the following:

� The table A, concatenated index on col001, col002 is next to useless. This 
index is removed and replaced with an index on table A col002, then col001. 
This new index preserves the unique data integrity constraint that this index 
serves. 

� Because of the nearly total lack of unique values in col001 of this index, we 
have little fear in removing this index. Any other portion of the system that 
was using this index for processing will run faster without this index.

� This concatenated index leads with col002 to support the join from table B.

� This correction is displayed in Figure 10-13.

Figure 10-13   Correction to table A

� The table B index on col001, col002, col003 is also reversed to contain 
col003, col002, then col001, as displayed in Figure 10-14 on page 531.

CREATE UNIQUE INDEXCREATE UNIQUE INDEX

((indexNameindexName))
ON ON tableAtableA

(col2,col1);(col2,col1);

CREATE UNIQUE INDEXCREATE UNIQUE INDEX

((indexNameindexName))
ON ON tableAtableA

(col1,col2);(col1,col2);

BecomesBecomes
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Figure 10-14   Correction to table B

� There was never anything wrong with table C.

� The new query plan is displayed in Figure 10-15.

Figure 10-15   Optimal query plan for this example

The old query plan processes hundreds of thousands of records as table A is 
joined with B, and then the restrictive filter is applied. The new query plan begins 
by reading table B, retrieving only 700 records which are then joined with tables 
A and C. The new query plan is detailed below:

� Table B is processed first using a duplicate index, but in a key-only retrieval.

� Then the join is done to table A via the unique index on table A.

� The join to table C is done as before, via a unique index via an equality.

BecomesBecomes CREATE UNIQUE INDEXCREATE UNIQUE INDEX

((indexNameindexName))
ON ON tableBtableB

(col3,col2,col1);(col3,col2,col1);
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A

B

C

The query plan followed the table order, Tables “b”, “c”, and thThe query plan followed the table order, Tables “b”, “c”, and then “a”. en “a”. 
SELECT * WHERE ...SELECT * WHERE ...

Unique IndexUnique Index
(col1)(col1)

col1   CHAR(10)col1   CHAR(10)

FILTER, b.col3 = LITERALFILTER, b.col3 = LITERAL

11
22

col1   CHAR(30)col1   CHAR(30)
col2   SMALLINTcol2   SMALLINT
col3   CHAR(10)col3   CHAR(10)

Duplicate IndexDuplicate Index
(col3,col2,col1)(col3,col2,col1)

col1   CHAR(02)col1   CHAR(02)
col2   CHAR(30)col2   CHAR(30)

Unique IndexUnique Index
(col2,col1)(col2,col1)

33

FILTER, a.col1 = LITERALFILTER, a.col1 = LITERAL

44

JOIN, b.col1 = a.col2JOIN, b.col1 = a.col2

JOIN, b.col3 = c.col1JOIN, b.col3 = c.col1
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� There are still no temporary files.

� The query execution time completes in under one second.

Before releasing this solution to the customer, we must check both data sets. 
The one that was produced by the current (under performant) production system, 
and the one which is created by the (performant) test system. Because the two 
data set sizes were manageable, we unloaded the results to ASCII text files and 
used operating system utilities to compare these results and prove them to be 
identical.

10.3.2  Additional comments
Further comments on this example are contained in the list below:

� Upon critical examination, we see that the index on table B contains three 
columns; col001, col002, and col003. Col002 is never mentioned in the 
example. Although col002 is never referenced, it was left as a member in the 
new solution index in the event that other portions of the application system 
needed this column in this index.

� The original index on table A could definitely be removed; it was useless.

� You should generally lead a concatenated index with the most unique, most 
selective columns.

� The original index on table B may have been left in place in the event some 
other portion of the system needs it. A new second and corrected index could 
have been added. But, indexes are not free resources. In addition to the disk 
space they consume, they must be maintained. Here are a few examples, for 
instance:

– An index is like a mini, vertical slice of a table. It contains a subset of 
columns and all rows. 

– When a table has (n) indexes, a single new record insertion must be 
recorded in (n+1) places. This event must be recorded the SQL table 
proper, and then in each index. If a table has four indexes, there is the 
SQL table proper and four vertical slices of that table, the indexes, that 
must receive the new record insert.

– This (n+1) guideline is also true for record deletes.

– Record updates affect the table proper, and then any indexes containing 
columns that are changed.

� In many of the program code listings and diagrams in this example, the 
column list of the SQL SELECT statement lists all columns. Retrieving all 
columns from table B would have prevented a key-only retrieval, since all 
columns from that table are not members of the index being used.
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� Table B has nine total columns and seven indexes. The original data modeler 
had violated the first rule of third normal form entity relationship modeling, 
because there was a repeating group of columns that were folded into table 
B. These columns should be exported as elements of a fourth table. The 
reason for so many indexes was to overcome index negation, non-anchored 
composite key:

– An easy example to describe what was taking place would be an order 
header table, and a detail table to the order header with the various order 
line items. The order header lists the unique attributes of order date, 
customer number, and others. The order line items lists that dynamic 
count of items which may appear on the order, such as the stock unit 
identifier, the item count, and cost.

– This modeler was new to relational database and SQL and could not get 
over the cost of having to join tables, compared to older database 
technologies which model data differently.

– To reduce the number of join operations, this modeler folded the order line 
item (child) table into the order header (parent) table. This not only limits 
the number of line items that can be on one order (the column list is now 
hard coded as a repeating set of columns), it causes a number of 
performance issues.The most obvious performance issue raised is 
non-anchored composite key.

– When order line items appear as a repeating set of columns in the order 
header table, it becomes very hard to answer the question “which orders 
contain item number ‘444’, for example. This data could be in any of a 
repeating set of columns. Not only do you now require a larger number of 
indexes to support that query, the SQL SELECT syntax is also unduly 
complex.

� Why was the leading column in the table A index on col001, col002 a 
duplicate:

– As mentioned, this application (and its associated data model) was sold to 
the customer. This is a packaged application and was sold door to door, to 
dozens of consumers.

– Basically, the table A column col001 stored the activity location identifier, 
similar in use to a warehouse code. This customer only has one 
warehouse.

– We need not have changed the columns in the table for this one customer, 
but we could have changed the index plan. Changing columns will likely 
cause the application program code to change. No one would want this, 
since it increases cost and allows for divergent code streams in the 
application. Changing the index plan does not call for the application 
program code to change.
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– For those who are big on maintaining separate logical and physical data 
models, perhaps the index plan should always be part of the physical data 
model; at least when a given data model is delivered to numerous physical 
implementations.

10.4  Query optimizer example solution update
At the beginning of 10.2.1, “Background” on page 503, we stated that this real 
world example takes place several years ago. Since that time, relational 
database servers have increased their program capabilities. The current release 
of the database server software product referenced in this example would likely 
still not serve this three table SQL SELECT example in sub-second time, given 
the errors in the run-time environment. Read the following:

� We define the run-time environment as, the SQL SELECT, the available 
indexes, the version of relational database software, and other conditions.

� The original run-time environment with its older software executes the query 
in five minutes, on average. (Remember the query needs to execute in 
sub-second time.)

� Just updating the version of relational database software improves execution 
time of this query from five minutes to five or 10 seconds.

– While the query execution time is greatly improved, it is still not 
sub-second as required.

– The improvement in execution time is accomplished by a better query 
plan. This better query plan is still not as good as that provided in the 
solution in “Query optimizer example solution” on page 529.

– The new query plan uses a lot more memory and CPU resource to 
accomplish the improved execution time.

� We can use query optimizer hints to force the updated relational database 
software to execute the original (least optimal) query plan. Purely as a result 
of the newer and improved software, query execution time moves from five 
minutes to 10 or 20 seconds. In other words, just updating the software allows 
for most of the performance gain, not the new query plan.

The current release of this product would move execution time from five minutes 
to somewhere around five or 10 seconds using new technology. The modern 
query plan, from the same run-time environment is listed in Example 10-2 below:

Example 10-2   Query plan of same three table SQL SELECT and run-time environment, 
with newer release of database server software

0000 
0001  -- This file has been edited for clarity.
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0002  
0003  QUERY:
0004  ------
0005  select
0006        ta.*, tb.col001, tb.col002, tb.col003, tc.*
0007     from
0008        table_a ta,
0009        table_b tb,
0010        table_c tc
0011     where
0012        ta.col001 = “01”
0013     and
0014        ta.col002 = tb.col001
0015     and 
0016        tb.col003 = “555”
0017     and
0018        tb.col003 = tc.col001
0019  
0020  DIRECTIVES FOLLOWED: 
0021  
0022  DIRECTIVES NOT FOLLOWED: 
0023  
0024  Estimated Cost: 1608720
0025  Estimated # of Rows Returned: 57142
0026  Temporary Files Required For:
0027  
0028    1) Abigail.tb: INDEX PATH
0029  
0030          Filters: Abigail.tb.col003 = ‘555’ 
0031  
0032      (1) Index Keys: col001 col002 col003
             (Key-Only)  (Serial, fragments: ALL)
0033  
0034    2) Abigail.ta: SEQUENTIAL SCAN
0035  
0036          Filters: 
0037          Table Scan Filters: Abigail.ta.col001 = ‘01’ 
0038  
0039  
0040  DYNAMIC HASH JOIN 
0041      Dynamic Hash Filters: Abigail.ta.col002 = Abigail.tb.col001 
0042  
0043    3) Abigail.tc: INDEX PATH
0044  
0045      (1) Index Keys: col001   (Serial, fragments: ALL)
0046          Lower Index Filter: Abigail.tb.col003 = Abigail.tc.col001 
0047  NESTED LOOP JOIN
0048  
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10.4.1  Reading the new query plan
By reading the query plan displayed in Example 10-2 on page 534, we see the 
following:

� Lines 005-0018 list the very same SQL SELECT we have been reviewing 
throughout these last sections. All of the joins are the same, and all of the 
filters are the same.

� Lines 0020-022 lists the query optimizer directives in effect. There are none.

� Line 0024 lists the estimated cost of this query. This estimated cost 
(1,608,720) is higher than the cost from Example 10-1 on page 509, which 
was (407,851). The amount of resource, both memory and CPU, is higher 
which will be seen in this list, but the execution time (which is not displayed) is 
much lower.

� Lines 0028, 0034, and 0043 display the table order for this query plan.

– This query plan accesses the tables in the order of B, then A, then C, 
which is our preferred order.

– We wish to process table B first because of its highly selective filter 
criteria. (Remember that the filter criteria on table B returns 700 records, 
on average, from a total record count of 840,000. This means we only 
have to perform 700 joins to both tables A and C, not 840,000 joins from 
table A to B.)

� Line 0028 lists the table access method for table B.

– The first operation we wish to perform on table B is application of the filter 
criteria. The filter criteria on table B effectively reduces the size of this 
table, as records are rejected when they do not match the filter,

– WHERE col003 = ‘555’;

– The table access method on table B would normally have been a 
sequential scan, because no usable index is headed with col003 (the 
column referenced in the filter). The concatenated index on table B 
columns col001, col002, col003 would be disallowed because of a 
negation of index, non-anchored composite key.

– However, we can use the index on table B, col001, col002, col003 
because of an exception. In table B, we are only reading columns col001 
and col003 which are both members of the col001, col002, col003 index. 
The only exception to the negation of index, non-anchored key 
behavior is when that index may be used in a key-only indexed retrieval.
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– An index is a vertical slice of a table, containing all records but only a 
subset of the columns. The index on table B, columns col001, col002, 
col003 will be read sequentially from top to bottom, because of the 
non-anchored condition. Reading this index is still more efficient than 
sequentially scanning the SQL table proper, as the index is presorted and 
measurably more compact.

� Line 0034 lists the table access method for table A, and there is much new 
technology to discuss here.

– It was mentioned many times that the original query plan table order could 
not be table B then table A, because the join to the second table, table A, 
is not served via an index. No query optimizer would allow a second or 
subsequent table in the processing of a query to be read sequentially. If 
this were allowed, it would mean that each of 700 records from table B 
would cause a sequential scan into table A. That absolutely would not 
perform well.

– But, the new query plan does read table B, then table A, and without 
preexisting support of an index in place on table A. How is this allowed? 
The query processor will build a temporary index to support an indexed 
retrieval into table A. An indexed retrieval will be the access method for 
table A, even though no index had previously existed.

We are going to pause the review of the new query plan to complete a discussion 
of table access methods.

10.4.2  All table access methods
Most vendors recognize four or five table access methods, which include:

Note: Another technology, not previously mentioned, will also be employed 
here. That is read ahead scans, also known as pre-fetching. When the 
database server detects (SQL table proper, data) sequential scans, or a full 
range (all records, sequential) index leaf page scan, which is mentioned 
above, or a bounded (data range driven) scan of leaf pages within an index, 
the query processor reads numerous pages in one physical I/O call, knowing 
in advance that these pages are needed and will be consumed.

In this example, we are sequentially scanning 840,000 records in an index. 
Because the index is small (3 columns, 44 or so bytes, with duplicate entries 
which reduce the overall size, perhaps 14 MB, per our example), it is possible 
we will read this table in as few as 8-20 physical I/O calls because of read 
ahead scans.
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� Sequential (table) access method is used when reading the records data 
page after data page, and applying filters as required by the query criteria. 
Read ahead scans are generally applied during sequential scans, unless 
record locking would discourage this behavior (you do not want to lock an 
unnecessary number of records and hurt multi-user concurrency and 
performance.)

� Indexed (table) access method is used when reading a single or set of 
matching key values from an index structure, and then possibly retrieving the 
remaining (non-indexed) table columns from the SQL table proper.

– B-tree+ indexes are most common. B-tree+ index technology is 
discussed briefly with Figure 10-7 on page 522.

– Hash indexes (also known as hash tables) are another indexing 
algorithm. Actually, hash indexes are many times more performant than 
b-tree+ indexes under the proper conditions.

– Hash indexes lose nearly all performance if any significant amount of the 
index data changes, which is common in relational database servers. 
While b-tree+ indexes perform poorly (with all of their hierarchy levels, 
branch and twig overhead, page splitting, and so on), when compared to 
hash indexes, b-tree+ indexes do not lose performance with volatile data 
sets.

– During the execution of a SQL SELECT (or any query, which is meant to 
include the read phase of SQL UPDATE and SQL DELETE), the data is 
non-volatile; that is, the data is read as a moment in time. Under these 
conditions, a hash index may be used and will be more performant than a 
b-tree+ index.

– Most relational database server vendors have hash indexes, but not 
permanent hash indexes. They use hash indexes during query 
processing, and nowhere else.

– Perhaps the quickest way to describe hash indexes is to compare them to 
an arithmetic modulus operand; given (n) records, and a known 
distribution of key values, you can determine where a given key value is in 
this list via a calculation. A small amount of (index leaf page data) 
scanning may be necessary to correct for any error in this calculation. 
Hash indexes have essentially a single leaf level, to use the b-tree+ index 
analogy. This is why hash indexes do not handle volatile data well; they 
have no branch and twig levels to split for new data insertion in the middle 
of their bounded ranges. Volatile data would soon cause the entire hash 
index data structure to have to be rewritten.

– Bitmap indexes are another indexing algorithm. Bitmap indexes best 
serve highly repetitive demographic type data, and are used often in 
decision support applications.
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– Perhaps the quickest way to describe bitmap indexes is to envision a two 
dimensional matrix of all SQL table proper record physical disk addresses 
(the x-axis dimension), and then all possible key values (the y-axis 
dimension). Any point in the two dimensional graph contains a single bit (a 
very small amount of storage) which is boolean; a true or false condition to 
answer, is this record a member of this key value group? 

– The performance of bitmap indexes lies in the manner that complex 
groupings of boolean logic (AND and OR conditions) that bitmap indexes 
can process with highly efficient bit-wise boolean software operands.

– Bitmap indexes can handle volatile or static data. 

– R-tree (Region tree) indexes, or Bounded box indexes, are used often 
for geographic data to form associations between near or like data.

– Perhaps the easiest manner to describe R-tree indexes is to envision a 
single point on a map, and then a listing of every other point located within 
every gradient of one kilometer. There would be a list of every other point 
within 1 kilometer, 2 kilometers, and so on. The R-tree data can also 
encode direction, such as North of the given point and 1 kilometer away.

– Star indexes are not a specific term we define here, but more a grouping 
of index technologies to which various relational database vendors give 
many names. Generally, star indexes are those used to list key columns 
from two or more SQL tables; representing a pre-joined set of records to 
serve a frequently observed query.

– Star indexes can have great difficulty with volatile data, since they 
represent records from numerous tables, that have also to be evaluated 
for a join criteria. (Add a new record to one table in the joined table list, 
and you have to perform the joined select to see which new records have 
to be added to this multi-table index; each record add calls for execution of 
a joined SQL SELECT.)

� Remote path (table) access method is used when one or more of the 
involved tables is located in a remote database server. Given a two table SQL 
SELECT, where the tables are joined and each table has a single filter 
criteria, here is what is likely to happen:

– The portion of the query involving the remote SQL table will be sent to the 
remote server for processing; that is, just the filter criteria is applied to the 
remote table.

– The filtered (remote) result set is copied to a temporary table on the local 
database server.

– Query processing will continue as though the remote table were local, 
which it essentially now is.
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– Most vendors will not attempt to join records over a network as the 
communication latency would prove too slow to the overall execution of 
the query.

– A good query optimizer will have knowledge of the remote table, and 
based on selectivity of filters and cardinality of the join condition, may filter 
the local table, export it to the remote server, do the join, then copy the 
results back. Obviously with that additional communication overhead, the 
local database server would require strong evidence to take this query 
plan. The IBM DB2 UDB query optimizer excels at this capability.

� Auto-index (table) access method involves something similar to the three 
table SQL SELECT example we have been examining.

– As mentioned, the query optimizer will generally disallow having a 
sequential table access method on two or more tables inside a single SQL 
SELECT.

– Given a two table SQL SELECT where neither side of the join pair is 
indexed, what can the query optimizer do. Years ago, the query processor 
would create a full multi-user mode b-tree+ style index on the larger of the 
two tables, then sequentially scan the smaller table, and join to the now 
indexed (what was largest) table. This index was then discarded 
immediately after query processing. (The index was discarded because it 
was built at a moment in time, like a hash index. That is, the index was not 
maintained during query processing.)

– Because creation of b-tree+ style indexes is very expensive, especially 
during query processing, this behavior has been changed (improved). The 
query optimizer will create a hash index, versus a b-tree+, to perform the 
query processing.

– While technically a table access method, creating a hash index to perform 
a table join is often recorded as a table join method. (If we do not have a 
join, we do not auto-index.)

� ROWID (table) access method: ROWID is generally a term used to refer to 
the special column in each table which is the absolute disk address of a given 
record on the hard disk. A ROWID access method is the most efficient since 
the physical location of a given record is known. As a table access method, 
the term ROWID is rarely seen; its use is implied when query processing 
through the given tables and records.

10.4.3  Continue reading the new query plan
Now that all table access methods have been fully defined, we continue on line 
0034 in Example 10-2 on page 534, to review that access method on table A:
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� As displayed, the query processor will perform a sequential scan on table A, 
but only so it may build a hash index on table A, column col002. The table 
access method on table A is actually (hash) indexed retrieval; that is, as soon 
as the index is built.

– The query optimizer detects that a filter is in effect on column col001 of 
table A but that this filter is not very selective, and would be better served 
by a sequential scan (to build the index).

– The hash index created on table A col002 may fit entirely in memory, or 
may be large enough that it will overflow to temporary storage on disk. 
While the query plan contains a section for temporary files (objects), it 
often does not report temporary files required for hash index creation. 
Another administrative tool is needed to uncover this activity.

– After the hash index on table A is built, query processing continues joining 
table B to table A.

– The newly created hash index contains the table A col002 key value, in 
ascending key value sort order, along with a physical disk address of the 
remainder of the table record in the SQL table proper.

– Line 0037 displays the filter on table A.

– Lines 0040-0041 display the join method between tables B then A. The 
join method listed is dynamic hash join, but it is more commonly referred to 
as a hash join method.

� Based on the level of query optimizer statistics gathered, we were seeing 
indexed retrieval on table A to build the hash index, or then in other query 
plans, sequential. Even though we do not like the current index on table A, 
it is a (small) vertical slice version of table A and may be a more performant 
method to retrieve the data for the hash index.

� Lines 0043-0047 detail table C.

– Table C is accessed via an indexed retrieval and joined via a nested loop.

– Because the join to table C is via an equality to a single column in a unique 
index, table C can only return one record per join. For this reason, no read 
ahead scan behavior is needed for table C.

10.4.4  All table join methods
Most relational database software vendors have at least three or four (table) join 
methods. Listed below are comments regarding (table) join methods:

� Nested loop (table) join method:
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– Nested loop (table) join method is the oldest join method. The newer 
(table) join methods have only arrived in the last five to seven years with 
parallel process architecture relational database servers.

– The nested loop (table) join method is dependent on at least one of the 
two join tables having a preexisting index. If one of two tables is indexed, 
the non-indexed table is read first via a sequential scan, while qualifying 
rows are read from the (second) table via an indexed read.

– If both join tables lack an index, then one of two tables will have a hash 
index created on the join columns, of the pre-filtered records; this behavior 
is called an auto-index. Technically this is an indexed table access method 
and a hash index (table) join method.

– Nested loop (table) join method is often viewed as the most efficient join 
method based on total execution time of smaller data sets, but this is 
somewhat misleading. The nested loop (table) join method depends on 
indexes (a workload with an associated execution time) that are created 
and maintained before query execution.

– The nested loop join (table) join method is probably less CPU and disk I/O 
efficient than other (table) join methods when larger-sized data sets are in 
effect. This is somewhat dependent on index efficiency, selectivity of 
filters, and other run-time conditions.

� Hash index (table) join method:

– The hash index (table) join method is somewhat like a nested loop (table) 
join method in function; an iterative (reentrant) software programming loop 
is employed. However, the hash index is so much more efficient based on 
its function and smaller size, that this comparison is rarely made. (Efficient 
once the hash index is created.)

– Few if any relational database server vendors have permanent hash 
indexes, and prefer instead to use them exclusively during query 
processing.

– A hash index table join method is reviewed in the query optimizer example 
detailed in “Query optimizer by example” on page 503, and will not be 
expanded upon further here.

– Use of a hash index has two phases. During the build phase, the hash 
index is created. During the probe phase, a second table uses the hash 
index to perform the join.

� Sort merge (table) join method:

– Sort merge (table) join method is definitely the most technically advanced 
(table) join method. It is generally most used in the decision support 
application area.
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– To better understand sort merge (table) join method, first we are going to 
offer a little more detail regarding the nested loop (table) join method so 
that we may compare and contrast. Figure 10-16 on page 543 displays a 
simplistic rendering of a nested loop (table) join method.

Figure 10-16   Graphical depiction of nested loop (table) join method

Concerning Figure 10-16:

� The query processor only joins two tables at a time, not three or more. To join 
three or more tables, first two tables are joined, and then the third table is 
joined to this two-table (now joined) product, and so on until the query is 
complete.

� It has been stated that the query optimizer will not allow for a query plan 
wherein the second table is accessed via a sequential table access method. 
If there is no index to support accessing the second table, one is built during 
processing of the query. Following this idea, the table on the right of 
Figure 10-16 is shown to have data in sort order, where the data in the table 
on the left may be in random or ordered sequence.

� The sort order present in the second table is meant to imply some form of 
indexed retrieval.

� The lack of sort order in the first table is meant to imply that this table may by 
read via a sequential scan. (Data in an SQL table is generally not presorted, 
and is assumed to be in random sequence.)
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� The table on the left will be read one time only, from top to bottom via 
whatever table access method is in effect. If any filter criteria is in effect for 
the left table, this filter criteria will be applied. Only those records which satisfy 
the filter criteria are then joined to table two. Each single row from table one 
which meets the filter criteria will cause table two to be accessed. If 20 
records from table one satisfy the filter criteria, then table two will be 
accessed 20 times. If each record from table one joins with 10 records in table 
two, 20 accesses of 10 records each equals 200 total accesses of table two.

� The table on the right is accessed via an indexed retrieval. The arrows 
between the two tables in Figure 10-16 on page 543 are meant to signify 
program flow control; that is, a recursive loop starts by positioning within table 
one, and then each row in table one meeting the filter criteria can access all 
or a subset of table two.

� Given two tables with all other factors being equal (table size, selectivity of 
the filters being applied to each table are equal or nearly equal, and certainly 
other factors), the query optimizer follows a convention of worst table first; 
that is, given two operations, one which is efficient and one inefficient, and 
one of these operations drives the second which must be repeated, lead with 
the inefficient operation which causes a repetition of an efficient operation. In 
other words, given one indexed table and one which is not, lead with the 
non-indexed table, suffer through the sequential scan (which is done once), 
and repeat an operation which is a small, targeted (indexed) read of the 
second table.

Concerning Figure 10-17 on page 545:

� The nested loop (table) join method from Figure 10-16 on page 543, has no 
startup costs; we can just begin by sequentially scanning table one, and join 
into table two via an indexed read. If neither table is indexed, then one table 
will be indexed during query processing using, most likely, a dynamic hash 
join into table two. However, that is a hash join, not a nested loop join.

� A sort merge (table) join method is generally used in business intelligence 
and/or when the following run-time conditions are in effect:

– Neither table from the join pair is indexed, or such a large volume of these 
two tables is to be read that indexed (table) access methods would prove 
too costly. Filters, while present, are still expected to produce a larger 
percentage of records from the tables than not.

– This raises a general condition of business intelligence (BI) queries over 
those seen in online transaction processing (OLTP); that is, BI queries 
read sweeping and voluminous amounts of data with little or no support 
from indexes, while OLTP read few records and via known indexed table 
access methods.
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– Also, BI queries are often accompanied with set operands; that is, 
aggregate computations on received rows, and computations such as 
AVG (average). These aggregate calculations require the data set that 
they report on to be sorted by several columns which are often not 
indexed.

� The query from Figure 10-16 on page 543 was expected to process 20 times 
10 records (200 records). The query in Figure 10-17 is expected to process 
all or most of both tables (many hundreds of records, and then with a heavy 
data sorting requirement).

Figure 10-17   Graphical depiction of sort merge (table) join method

� Figure 10-17 displays two data sets, table one data and also table two data. 
Table one data is read sequentially, has any filter criteria applied, and then 
sorts the data by join column key value. The same is done to table two, either 
concurrently or in sequence.

� Then, table one is read from top to bottom one time only. As a single record is 
produced from table one, it is joined to any matching records in table two. As 
the join pairs from table two are exhausted (we have reached the end of the 
range of records in table two which do in fact join), processing returns to table 
one. The primary point here is, table one is read from top to bottom one time 
only, and the same is true for table two.

� The sort merge (table) join method has measurably larger startup costs; that 
is, filtering and sorting both tables before any processing is able to be 
performed. However, after this preparatory processing is complete, the 
sort-merge (table) join method is very fast, measurably faster than a nested 

3
4

4
4

6
7

7
7
8

11
11
11
…

1
4

6
7
8
9
11
…

 Chapter 10. SQL query optimizer: A primer 545



loop (table) join method, since significantly less post-preparatory work needs 
to be performed.

The final comparison on nested loop versus sort-merge (table) join methods is 
listed below:

� If all run-time conditions are met, a nested loop join method will produce the 
first row first; meaning, nested loop has little or no preparatory work, and will 
output a joined record before sort-merge (table) join method.

� If all run-time conditions are met, a sort-merge (table) join method will 
produce the entire data set first; meaning, even with all of the preparatory 
work to perform, sort-merge join is measurably more CPU efficient than a 
nested loop (table) join method. Nested loop (table) join method accesses the 
second table multiple times, sort-merge (table) join method accesses the 
second table once. It is a trade-off of waiting for preparatory work to 
complete, versus not waiting.

� There are times where the run-time environment does not support a nested 
loop (table) join method, where you must employ a dynamic hash (table) join 
method or sort-merge (table) join method.

10.4.5  Continuing the list of all table join methods
The fourth, and perhaps most interestingly named, table join method is the push 
down semi-hash table join method. The push down semi-hash join is used 
almost exclusively in the area of business intelligence and decision support. The 
run-time environment that calls for the execution of a push down semi-hash join 
is listed below:

� As a decision support (business intelligence) query, the tables being 
referenced in this type of query are expected to be data modeled using the 
dimensional data modeling; a large central fact table containing millions of 
records which represent some event or intersection of data. A number of 
small dimension tables contain the indexes to this data. (Index as in 
demographic vector; indexes such as time, location, and product 
categorization. Index in this context does not mean database index, as in 
hash or b-tree+.) Figure 10-18 on page 547 displays this kind of query.

Note: If you have seen query optimizer influencing statements that call for 
first row first or total data set (all rows) performance; this is an area where 
these types of statements are considered.
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Figure 10-18   Example query referencing dimensional modeled tables

� In Figure 10-18, the Sales table has nearly all of the records by count, and 
that number is massive compared to the remaining tables. All of the 
dimension tables, in this case there are four, join to the Sales (central fact) 
table, which is typical in a dimensional model. The problem is, any normal 
query processing is going to hit the Sales table within the first or second table, 
and processing Sales is going to produce a result set of thousands or millions 
of records, thousands or millions of records which then must be joined to the 
three remaining dimension tables; (this results in lots of looping and CPU 
consumption.)

� Figure 10-19 on page 548 is a graphical depiction of a nested loop join 
method of this query. If Product-A represents the join of the first two tables, 
Customer and Sales, this result set will have millions of records; millions of 
records which then have to be joined to the three remaining tables; Product-B 
will have millions of records, Product-C, and so on.

Dimension table

Time index

120 Rows

Dimension table

Geography Index

48 Rows

Dimension table

Customer Index

88,892  Rows

Fact table

Sales Event

56,777,323,892  Rows
Dimension table

Product Index

120 Rows

SELECT *, SUM(s.revenue) IS_BEST

FROM time t, sales s, geography g, customer c

WHERE t.key = s.t_key AND g.ket = s.g_key AND

p.key = s.p_key AND c.key = s.c_key AND

s.salesQuarter = 4 AND s.salesYear = 2008 AND

s.productSKU = “IDS” AND g.geoCode = “WI”

AND p.productGroup = “MGD”

GROUP BY s.salesYear, s.salesQuarter

ORDER BY s.productSKU, IS_BEST;
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Figure 10-19   Nested loop join of earlier query, also referred to as a left deep tree join

A push down semi-hash join is designed to significantly reduce the number of 
joins that have to be performed by processing the (large) central fact table last. 
How to do this is not immediately apparent, because all of the dimension tables 
join to the single fact table, the dimension tables do not join to themselves.

A push down semi-hash join accomplishes this goal (processing the fact table 
last) in the following manner:

� Using the transitive dependency query optimizer query rewrite capability, 
copy as many of the filter criteria to the dimension tables as possible. The 
query in Figure 10-18 on page 547 displays five filter criteria. Example as 
shown:

� WHERE s.salesQuarter = 4 AND s.salesYear = 2008 AND

� s.productSKU = “IDS” and g.geoCode = “WI” AND 

� p.productGroup = “MGD”;

� The two filters on s.salesQuarter and s.salesYear can be copied and applied 
to the Time table, thus reducing at least a small percentage of records that 
will need to be processed.

� The phrase push down refers the following; join all of the dimension tables 
into one large result set, applying any applicable filters as this is done. Since 
the dimension tables do not relate to one another, join these tables as an 
outer Cartesian product. In other words, create a large intersection data set of 
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these four tables. What is remaining then is a standard two table join, the 
single table which is the intersection of all of the dimension tables, and the 
original fact table as it existed.

� These are two options:

– Standard nested loop; 88,892 records joined to 56,777,323,892, then 120, 
48, and 120, resulting in several billion joins.

– Or, push down semi-hash join; join 88,892 records to 120, 48, and 120, 
then join to the large 56,777,323,892 record table, resulting in fewer joins.

� The term hash in push down semi-hash join refers to the hash index that is 
built on the outer Cartesian result set of the dimension tables.

� In a clustered database environment (the database is spread across several 
physical hardware nodes operating in a single cluster), the outer Cartesian 
product of the dimension tables is often broadcast to each node in whole, so 
that all joins may be performed locally on each separate node.

Example index needed for push down semi-hash join
Consider the SQL SELECT listed below. It is a typical business intelligence, star 
schema type SELECT:

SELECT SUM(o.price)

FROM orders o, customers c, suppliers s, product p, clerks c

WHERE o.custid = c.custid AND o.suppid = s.suppid AND

o.prodid = p.prodid AND o.clerkid = c.clerkid AND

c.zipcode = “77491-6261” AND s.name = “KEENE” AND

p.type = “WEB DATABLADE” AND c.dept “ISV”;

The optimal query plan is to perform a push down semi-hash join on; Customers, 
Suppliers, Product, and Clerks. The query optimizer has rules when to consider a 
a push down semi-hash join. One rule is related to having filters present on some 
or all of the detail tables (such as Customer and Suppliers). Or, the rules may 
entail maximum record counts that may exist in any of these (detail) tables. 
Further, in order for the push down semi-hash join to be available, there needs to 
be a specific index on the fact table, in this case, Orders. The Orders table 
requires an index on the Orders table join columns:

CREATE INDEX i44 ON orders (custid, suppid, prodid, clerkid);

A more verbose depiction of a nested loop join method
Consider the SQL SELECT statement listed below:

SELECT c.custno, o.orderno
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FROM customer c, orders o, items i

WHERE c.custno = o.custno AND

o.orderno = i.orderno;

The first thing to discuss is that there are several more table join orders than you 
may realize:

� Join table Orders to Customer, then join the result to Items
� Join Customer to Orders, then Items
� Join Order to Items, then Customer
� Join Items to Orders, the Customer
� (Not likely, but still briefly considered) Join Customer to Items, then Orders
� (Not likely, but still briefly considered) Join Items to Customer, then Orders

The program logic for a table order of Customer to Orders, then Items, is:

FOR EACH ROW IN customer TABLE DO

READ THE ROW INTO c

FOR EACH ROW IN orders TABLE DO

READ THE ROW INTO o

IF o.custno == c.custno THEN

FOR EACH ROW IN items TABLE DO

READ THE ROW INTO i

IF i.orderno == o.orderno THEN

RETURN THIS ROW TO THE USER APPLICATION

END IF

END FOR

END IF

END FOR

END FOR

From this sample program code, perhaps you can see the CPU intensive nature 
of the nested loop (table) join method. Also, the ability for the nested loop (table) 
join method to return the first record after just a few statements can also be seen 
(three record reads, and two IF statements).
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10.5  Rules and cost-based query optimizers
After the example query reviewed in 10.2, “Query optimizer by example” on 
page 503, through 10.4, “Query optimizer example solution update” on 
page 534, now we are going to perform a step-by-step detailed review of the all 
query optimizer algorithms. We cover single and simplistic examples for each 
data point. After this section, you might then apply all of the points covered here 
towards the previous example.

The very first query optimizers relied more on (heuristic) program logic to 
determine the most optimal query plan. As relational database software products 
became more capable, this logic was enhanced with data related to the tables 
themselves, and the system which contains them to include; the distinctiveness 
of duplicate key values, the expected physical performance of the hard disks 
these tables reside on, the current CPU load or network transfer rates, the 
amount of available sort memory, and more. As you can see, the query optimizer 
considers more than table size or the syntax of the SQL SELECT to determine 
query plans. 

When software vendors added more and more awareness of the run-time 
environment to their query plan calculation, they began to call their query 
optimizers cost-based query optimizers. Cost-based query optimizers did not so 
much replace rules-based query optimizers as they did enhance them. 
Rules-based query optimizers are based on sound logic. A cost-based query 
optimizer adds more knowledge to the already sound algorithm of a rules-based 
query optimizer. Without being overly simplistic, all query optimizers result in a 
large case statement (with perhaps tens of thousands of lines of code) which 
determine the query plan.

While different vendors may list more or fewer primary query rules, the list below 
is generally what most vendors recognize. The primary rules of a query optimizer 
(which are supplemented with cost-based data) include:

� Rule 1: Outer table joins
� Rule 2: (Non-outer) table joins
� Rule 3: Filter criteria
� Rule 4: Table size
� Rule 5: Table cardinality

Note: As a given SQL SELECT is received by the query optimizer, these five 
rules are applied in the order listed above until, among other things, a table 
order is determined; in other words, the order in which the tables will be 
accessed and then joined.
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Each of these rules is expanded upon in the sections that follow.

10.5.1  Rule 1: Outer table joins
If you execute a two table SQL SELECT, and the tables are joined, a record from 
one table is only returned where there is a matching record in the second table; 
that is, if you join the Customer and Customer-Order tables, no records from 
Customer are returned if a given customer has never placed an order. This can 
be both useful and not so useful. If you need to send a holiday card to each 
customer thanking them for the (n) orders they placed last year, no card is going 
to the customer who has yet to place orders.

An outer join is one that returns records from joined SQL tables where the stated 
join criteria exists, and returns only the dominant table record columns where 
the relationship does not exist; that is, where there is a relationship between two 
tables, the outer acts like a normal join. When there is not a matching 
subordinate record, those columns are populated with SQL NULL values.

The term outer join is not entirely industry standard. Some relational database 
vendors may refer to an outer join as a left-handed join, right-handed join, 
conditional join, and other similar terms.

Example 10-3 displays an outer join, a join between a Customer and (Customer) 
Orders tables.

Example 10-3   Example of SQL SELECT with an outer join

0000 
0001 QUERY:
0002 ------
0003 select
0004    *
0005 from customer t1, outer orders t2
0006 where
0007    t1.customer_num = t2.customer_num
0008 
0009 Estimated Cost: 8
0010 Estimated # of Rows Returned: 28
0011 
0012   1) Abigail.t1: SEQUENTIAL SCAN
0013 
0014   2) Abigail.t2: INDEX PATH
0015 
0016     (1) Index Keys: customer_num   (Serial, fragments: ALL)
0017         Lower Index Filter: Abigail.t1.customer_num =
0018         Abigail.t2.customer_num 
0019 NESTED LOOP JOIN
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0020 
0021 

In an outer join, one table is referred to as the dominant table, while the other is 
subordinate. The dominant table is the one that will return records whether or not 
a matching record exists in the other subordinate table. Consider the following:

� There are two table join orders to the above query; table one then two, or 
table two then one.

� If the dominant table is read first, then we have all of the records we need 
from table one to satisfy the query. We join to the subordinate table and return 
joined records when found. If a table two join record is not found, then one 
record from table one is returned with SQL NULL values filling the columns 
that normally come from the subordinate table matching record.

� If we read the subordinate table first, we process the join as though 
performing a normal (non-outer) SQL SELECT; reading the subordinate table 
first gives us join column key values as they as found to exist in the 
subordinate table. However, after query processing, we somehow have to 
produce those rows (the join column key values) from the dominant table that 
do not exist in subordinate table. We would have to execute a query similar 
to:

SELECT dominant-table-primary-key

FROM dominant-table

WHERE dominant-table-primary-key NOT IN

(SELECT subordinate-table-foreign-key FROM subordinate-table);

The above would be a very expensive query; a NOT IN to a nested (one SQL 
SELECT embedded within another) SQL SELECT can produce many, many 
disk I/O operations.

From the text presentation of the query plan in Example 10-3 on page 552:

� Line 0005 displays that the Customer table is dominant, because the outer 
keyword appears before the Orders table; the presence of the outer keyword 
before the Orders table makes it subordinate.

� Line 0012 displays that the dominant table is read first, as expected.

Note: In an SQL SELECT with an outer join criteria, the dominant table is 
always processed before the subordinate table. Obviously, the mere presence 
of an outer join criteria greatly affects table join order, which can then greatly 
and negatively affect overall query performance. If you can avoid use of the 
outer join criteria, do so.
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� Because there is no filter criteria on t1 (the Customer table), t1 is processed 
with a sequential table access method; line 0012. (We are returning every 
record from table t1. It is more efficient to access this table sequentially than 
via an index; that versus using an index and then a retrieval of the full record 
from the SQL table proper.)

Example 10-4 displays the same query as in Example 10-3 on page 552, 
however, the outer keyword is applied to the Customer table, not the Orders table 
as before:

Example 10-4   Example of outer join with outer keyword having been moved

0000 
0001 QUERY:
0002 ------
0003 select
0004    *
0005 from outer customer t1, customer t2
0006 where
0007    t1.customer_num = t2.customer_num
0008 
0009 Estimated Cost: 8
0010 Estimated # of Rows Returned: 28
0011 
0012   1) Abigail.t2: SEQUENTIAL SCAN
0013 
0014   2) Abigail.t1: INDEX PATH
0015 
0016     (1) Index Keys: customer_num   (Serial, fragments: ALL)
0017         Lower Index Filter: Abigail.t1.customer_num =
0018         Abigail.t2.customer_num 
0019 NESTED LOOP JOIN
0020 
0021 

From Example 10-4:

� The table order has changed with the movement of the outer keyword. With t2 
now being the dominant table, that table is processed first.

� Without the presence of filters and other query criteria, nearly every aspect of 
Example 10-3 on page 552 and Example 10-4 remain the same; the costs, 
and others. In a more realistic SQL SELECT, the affect of the outer keyword 
on query cost and amount of resource to process the query would become 
evident.
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The next example, Example 10-5, displays what occurs if we attempt to use 
query optimizer directives to force processing of the subordinate table before the 
dominant table. (If allowed, this query would perform very poorly relative to the 
other choice for query plans.)

Example 10-5   Use of query optimizer directives and outer join

0000 
0001 QUERY:
0002 ------
0003 select --+ ordered
0004    *
0005 from outer customer t1, customer t2
0006 where
0007    t1.customer_num = t2.customer_num
0008 
0009 DIRECTIVES FOLLOWED: 
0010 DIRECTIVES NOT FOLLOWED: 
0011 ORDERED  Outerjoin nesting not compatible with ORDERED.
0012 
0013 Estimated Cost: 8
0014 Estimated # of Rows Returned: 28
0015 
0016   1) Abigail.t2: SEQUENTIAL SCAN
0017 
0018   2) Abigail.t1: INDEX PATH
0019 
0020     (1) Index Keys: customer_num   (Serial, fragments: ALL)
0021         Lower Index Filter: Abigail.t1.customer_num =
0022         Abigail.t2.customer_num 
0023 NESTED LOOP JOIN
0024 

From Example 10-5:

� The query optimizer directive we used was ordered, as shown on line 0003. 
The ordered query optimizer directive keyword states that the table join order 
must follow the names of the tables as they are listed in the SQL FROM 
clause.

� Line 0011 shows that the query optimizer directive was not followed, because 
it is expected that execution of this query plan would not be performant.

As stated, the query optimizer applies these five rules in order until a table 
processing order is determined. In each of the three queries above, rule one fully 
determined table processing order. The query optimizer did not need to refer to 
rules two through five to determine table order.
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10.5.2  Rule 2: (Non-outer, normal) table joins
Outer joins are not that common. Out of 100 queries, you can see outer joins two 
or four times out of 100. Joins (non-outer or standard joins) usually are expected 
to be everywhere. In any given query, each table is expected to be joined to at 
least one other table. If any given table is not joined to at least one other table, 
this results in an outer Cartesian product.

Earlier, when discussing nested loop (table) join methods, we introduced the 
concept of worst table first. Given a two table SQL SELECT, where the tables are 
joined, and both sides of the join pair are supported via an index, make the first 
table processed to be the least efficient of the two choices; that is, generally 
make the second table (the table access operation that is performed numerous 
times), the more efficient of the two.

Example 10-6 displays three queries, two with two tables and the last with three 
tables.

Example 10-6   Three examples of queries with joined tables

0000 
0001 QUERY:
0002 ------
0003 select
0004    t1.*, t2.*
0005 from customer t1, orders t2
0006 where
0007    t1.customer_num = t2.customer_num
0008 
0009 Estimated Cost: 7
0010 Estimated # of Rows Returned: 22
0011 
0012   1) Abigail.t2: SEQUENTIAL SCAN
0013 
0014   2) Abigail.t1: INDEX PATH
0015 
0016     (1) Index Keys: customer_num   (Serial, fragments: ALL)
0017         Lower Index Filter: Abigail.t1.customer_num =
0018         Abigail.t2.customer_num 
0019 NESTED LOOP JOIN
0020 
0021 
0022 QUERY:
0023 ------
0024 select
0025    t1.*, t2.*
0026 from orders t1, items t2
0027 where
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0028    t1.order_num = t2.order_num
0029 
0030 Estimated Cost: 9
0031 Estimated # of Rows Returned: 64
0032 
0033   1) Abigail.t1: SEQUENTIAL SCAN
0034 
0035   2) Abigail.t2: INDEX PATH
0036 
0037     (1) Index Keys: order_num   (Serial, fragments: ALL)
0038         Lower Index Filter: Abigail.t1.order_num =
0039         Abigail.t2.order_num 
0040 NESTED LOOP JOIN
0041 
0042 
0043 QUERY:
0044 ------
0045 select
0046    t1.*, t2.*, t3.*
0047 from customer t1, orders t2, items t3
0048 where
0049    t1.customer_num = t2.customer_num
0050 and
0051    t2.order_num = t3.order_num
0052 
0053 Estimated Cost: 15
0054 Estimated # of Rows Returned: 62
0055 
0056   1) Abigail.t3: SEQUENTIAL SCAN
0057 
0058   2) Abigail.t2: INDEX PATH
0059 
0060     (1) Index Keys: order_num   (Serial, fragments: ALL)
0061         Lower Index Filter: Abigail.t3.order_num =
0062         Abigail.t2.order_num 
0063 NESTED LOOP JOIN
0064 
0065   3) Abigail.t1: INDEX PATH
0066 
0067     (1) Index Keys: customer_num   (Serial, fragments: ALL)
0068         Lower Index Filter: Abigail.t2.customer_num =
0069         Abigail.t1.customer_num 
0070 NESTED LOOP JOIN
0071 
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You can easily witness outer joins and their impact. Non-outer (normal) joins are 
perhaps less obvious because their presence is largely expected. From the first 
query in Example 10-6 on page 556, lines 0000 through 0020, see the following:

� Rule 1, an outer join is not present, so query optimization continues with rule 
2, normal (non-outer) joins.

� The two tables are joined, as shown on line 0007. With just two tables, the 
presence of the join criteria alone is not enough to determine table join order. 
Actually, a variation of rule 3 determines table join order for this query.

– Rule 3 is discussed below. For now, we will state that table join order was 
determined by the principle of worst table first.

– On lines 0017 through 0018, the join columns are stated to be:

t1.customer_num = t2.customer_num

– T1 is the Customer table, which has a unique index on customer_num (not 
shown in the example). T2 is the Orders table, which has a duplicate index 
on customer_num (not shown in the example).

– As a general rule the better index is the unique index, since the duplicate 
index permits numerous values. It is better to process the duplicate table 
first, and use the unique index to process the repetitive operation. The 
worst table is that with the duplicate index.

From the second query in Example 10-6 on page 556, lines 0022 through 0041, 
see the following:

� The second query is much like the first, a unique index column joined to a 
duplicate indexed column. The query plan is essentially the same between 
the two queries.

� Evaluating the selectivity, or uniqueness of an index is, of course, a heuristic 
(greedy, general guideline) type of rule. These rules apply when all other 
criteria are essentially the same. See the following:

– Unique indexes generally are more selective (return fewer records) than 
duplicate indexes.

– Duplicate indexes with more columns (a composite index) are generally 
more selective than a duplicate index with fewer columns.

– The query optimizer considers the lower cost of joining integer columns 
over character columns, which are more expensive.

– Given two indexes, both of equal selectivity, the query optimizer will give 
preference to any index which may also satisfy the SQL ORDER BY 
clause. Example as shown:

SELECT * FROM one_table WHERE

ixcol1 = 10 AND ixcol2 = 15 
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ORDER BY ixcol1;

Using the index on ixcol1 to process the query also returns the records in 
a presorted manner, and is subsequently more efficient.

From the third query in Example 10-6 on page 556, lines 0043 through 0071, see 
the following:

� This query gives us the first true glimpse of rule 2.

� The first table to be processed in this query is t3, the Items (order line items, a 
detail table to customer orders) table, determined by rule 3.

� The remaining table order is then determined by rule 2; table 3 joins with table 
2 (Orders, the customer orders table), then table 2 with table 1 (Customer).

10.5.3  Rule 3: (Presence and selectivity of) Filter columns
Because outer joins (Rule 1) are rare, and all tables are expected to be joined 
(Rule 2), Rule 3 is often the rule that determines most table orders in the 
calculation of a query plan. Generally, the data regarding the selectivity 
(cost-based) of these filters is the most important determinant in the creation of 
the query plan; that is, which filter, if executed first, will reduce the largest 
number of records to be processed, which then reduces query cost.

Previously we were using the phrase worst table first, and that concept still 
applies (if all other options and costs are equal). However, with the introduction 
of filters to the query, we will now use the phrase, as efficiently as possible, 
reduce the size of the tables that are being examined. In other words, give 
preference to the best filter to effectively reduce the size of the tables being 
examined (reduce the amount of disk I/O to be performed). 

Further, we also introduce the acronym, FJS (filter, then join, then sort), which 
is the high level summary of processing and processing order that occurs in the 
execution of a query.

The following queries include a number of criteria meant to explore Rule 3, filter 
criteria, as well as reinforce Rule 1, outer joins, and Rule 2. These queries are 
depicted in Example 10-7.

Example 10-7   Several queries, demonstrating Rules 1 through 3

0000  
0001  QUERY: the first query
0002  ------
0003  select
0004     o.order_num,
0005     sum (i.total_price) price,
0006     paid_date - order_date span
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0007  from
0008     orders o,
0009     items i
0010  where
0011     o.order_date > ‘01/01/89’
0012  and
0013     o.customer_num > 110
0014  and
0015     o.order_num = i.order_num
0016  group by 1, 3
0017  having count (*) < 5
0018  order by 3
0019  into temp t1
0020  
0021  Estimated Cost: 27
0022  Estimated # of Rows Returned: 1
0023  Temporary Files Required For: Order By  Group By
0024  
0025    1) Abigail.o: SEQUENTIAL SCAN
0026  
0027          Filters: (Abigail.o.order_date > 01/01/2089 AND
              Abigail.o.customer_num > 110 ) 
0028  
0029    2) Abigail.i: INDEX PATH
0030  
0031      (1) Index Keys: order_num   (Serial, fragments: ALL)
0032          Lower Index Filter: Abigail.o.order_num = Abigail.i.order_num 
0033  NESTED LOOP JOIN
0034  
0035  
0036  QUERY: the second query
0037  ------
0038  select
0039     c.customer_num,
0040     c.lname,
0041     c.company, 
0042     c.phone,
0043     u.call_dtime,
0044     u.call_descr
0045  from
0046     customer c,
0047     cust_calls u
0048  where
0049     c.customer_num = u.customer_num
0050  order by 1
0051  into temp t2
0052  
0053  Estimated Cost: 5
0054  Estimated # of Rows Returned: 7
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0055  Temporary Files Required For: Order By  
0056  
0057    1) Abigail.u: SEQUENTIAL SCAN
0058  
0059    2) Abigail.c: INDEX PATH
0060  
0061      (1) Index Keys: customer_num   (Serial, fragments: ALL)
0062          Lower Index Filter: Abigail.c.customer_num =
              Abigail.u.customer_num 
0063  NESTED LOOP JOIN
0064  
0065  
0066  QUERY: the third query
0067  ------
0068  select
0069     c.customer_num,
0070     c.lname,
0071     o.order_num, 
0072     i.stock_num,
0073     i.manu_code,
0074     i.quantity
0075  from
0076     customer c,
0077     outer (orders o, items i)
0078  where
0079     c.customer_num = o.customer_num
0080  and
0081     o.order_num = i.order_num
0082  and
0083     manu_code IN (‘KAR’, ‘SHM’)
0084  order by lname
0085  into temp t3
0086  
0087  Estimated Cost: 22
0088  Estimated # of Rows Returned: 28
0089  Temporary Files Required For: Order By  
0090  
0091    1) Abigail.c: SEQUENTIAL SCAN
0092  
0093    2) Abigail.o: INDEX PATH
0094  
0095      (1) Index Keys: customer_num   (Serial, fragments: ALL)
0096          Lower Index Filter: Abigail.c.customer_num =
              Abigail.o.customer_num 
0097  NESTED LOOP JOIN
0098  
0099    3) Abigail.i: INDEX PATH
0100  
0101          Filters: Abigail.i.manu_code IN (‘KAR’ , ‘SHM’ )
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0102  
0103      (1) Index Keys: order_num   (Serial, fragments: ALL)
0104          Lower Index Filter: Abigail.o.order_num = Abigail.i.order_num 
0105  NESTED LOOP JOIN
0106  
0107  
0108  QUERY: the fourth query
0109  ------
0110  select
0111     *
0112  from
0113     stock
0114  where
0115     description like ‘%bicycle%’
0116  and
0117     manu_code not like ‘PRC’
0118  order by
0119     description, manu_code
0120  into temp t5
0121  
0122  Estimated Cost: 4
0123  Estimated # of Rows Returned: 13
0124  Temporary Files Required For: Order By  
0125  
0126    1) Abigail.stock: SEQUENTIAL SCAN
0127  
0128          Filters: (Abigail.stock.description LIKE ‘%bicycle%’
              AND Abigail.stock.manu_code NOT LIKE ‘PRC’ ) 
0129  

The first query in Example 10-7 on page 559 is contained between lines 0000 
and 0034. See the following:

� This query has two tables, as shown on lines 0008 and 0009. The tables are 
joined on line 0015.

� Rule 1 (outer joins) is not in effect, since there are no outer joins.

� Rule 2 (table joins) does not help determine table order since there are only 
two tables, and both sides of the join pair can be served via an indexed table 
access method (there is an index on o.customer_num and i.order_num, not 
shown).

� The Orders table has two filters, as shown on lines 0011, and 0013. The 
Items table has no filters.

� There is also a filter on an aggregate expression, as shown on line 0017. If all 
things are equal, this filter has a lower priority since we must filter and then 
join these two tables before we can consider a filter on an aggregate 
expression. 
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– This filter is on the cardinality between the two tables. That is, how many 
join pairs have fewer than five records. We must fully process this query in 
order to satisfy execution of this filter criteria.

– If the aggregate filter were on a MIN() or MAX(), or an indexed join column 
or similar filter criteria, there would then be more processing choices that 
the query optimizer could consider since MIN() and MAX() can be known 
before the join under the very best conditions.

� Line 0025 displays that the table join order begins with the Orders table, 
(table “o”). If table o has 100 records, if the filter on table o reduces these 100 
records to just 10 records, and if table i has 100 records, effectively the two 
choices were:

– Read table “o” at 100 records, and apply the filter to produce 10 records. 
Then join 10 filtered “o” records to 100, an operation of 1000 records.

– Or join table “i” at 100 records to table ‘o” at 100 records, an operation of 
10,000 records, only to filter 10% of table “o” to produce the final 1000 
records.

� Due to rule 3, the presence of filter records on table “o”, the table join order is 
table “o” then “i”.

� Because there are two filters on columns in table “o”, and these columns are 
not both members of one (composite) index, this table is read sequentially. 
Other choices were:

– Read table “o” via an index on order_date, assuming one is present, and 
apply the filter criteria for order_date. But, any qualifying records in table 
“o” must also meet the criteria on customer_num. Since customer_num is 
not a member of any order_date index, we would have to access the 
record in the SQL table proper to evaluate the filter criteria for 
customer_num.

– The converse of the above is read any index for customer_num, then 
process the filter for order_date. 

– Or, read two indexes, one for customer_num and one for order_num. 
Compare both sets of results and produce an intersection, in other words, 
return rows which are common to both result sets. Creating an intersection 
of both result sets means both lists would have to be sorted, then 
compared key by key, and so on.

– For cost reasons, the query optimizer chose to sequentially scan the 
Orders table. (There was no index on order_date. The query optimizer will 
create indexes to join tables. The query optimizer will not create indexes 
just to process filters; creating an index requires reading the SQL table 
proper, which would then allow for filter criteria examination without the 
overhead of building the index.)
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� The table access method in table one (Orders) is sequential, line 0025.

� A nested loop method, line 0033, joins table two (Items) to table one (Orders).

� The access method on table two (Items) is indexed, line 0029.

� A temporary file is required to process the SQL GROUP BY clause. A SQL 
GROUP BY clause needs to sort records to perform its data sub-grouping.

� The SQL ORDER BY clause is on a differing column set. Therefore, a second 
sort operation will be performed to process the SQL ORDER BY. This too 
requires a temporary file.

– If the SQL GROUP BY and SQL ORDER BY were on the same columns 
and column orders, this second sort is not required.

– The SQL GROUP BY clause is on columns 1, then 3. The SQL ORDER 
BY clause is on column 3. If the SQL HAVING clause had a condition 
where column 1 equaled a single value, then the value in column 1 
essentially equals a (new) constant, whatever that value is. For example:

SELECT * FROM t1 ORDER BY “A”, column2;

is logically equivalent to:

SELECT * FROM t1 ORDER BY column2;

This is true because “A” is constant, it is unchanging. Consider the 
following:

SELECT * FROM t1 WHERE column5 = 10 ORDER BY column5, column6;

is logically equivalent to:

SELECT * FROM t1 WHERE column5 = 10 ORDER BY column6;

From the example query, line 0017, we see that the aggregate 
expression column can have values in the range of 1 to 4, which is not 
a single constant value. Therefore, the SQL ORDER BY clause 
provides different sort criteria than the SQL GROUP BY clause, two 
different sorts.
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� Line 0019, the retrieve results into a temporary table is used only for the 
benefit of the Redbook authors. This call did not affect query processing. All 
of the queries in this section are retrieved into a temporary result sets table.

� Rule 3 determined the table order for this query.

The second query in Example 10-7 on page 559 is contained between lines 0036 
and 0064. See the following:

� There are two tables in this query, as shown on lines 0046 and 0047.

� The tables are joined, line 0049, and there are no filters on either table.

� An SQL ORDER BY clause exists on the Customer table, customer_num 
column. Even though an index exists on this column, and that index is used to 
perform the join into table two, rows are still not being returned in sort order. 
The first table to be processed is cust_calls via a sequential access method; 
therefore, rows are read in random sequence.

– Why not read the Customer table first via customer_num to match the 
requested SQL ORDER BY clause sort order and thus avoid a sort 
operation? That is certainly an option. Returning to the acronym FJS, the 
query optimizer is concerned first with filtering and joining records before 
sorting.

– Not having any filters on any of the tables (no selectivity) meant that it 
would be measurably more efficient to read at least one of the two tables 
sequentially. The worst table first principle has the query optimizer read 
cust_calls (Customer Calls) first, and use the unique index into Customer 
to process the join. The amount of physical I/O to read Customer or 
cust_calls (Customer Calls) via an index when we are returning every row 
in the table is prohibitive relative to a sequential scan.

Note: The query rewrite capability of the query optimizer would detect these 
types of logical equalities and rewrite the query to have the SQL GROUP BY 
clause match the SQL ORDER BY clause, thus reducing a now redundant 
sort operation. Example as shown:

� These two queries are logically equal because column5 is constant.

� As specified by the filter criteria “column5 = 10”

SELECT * FROM t1 WHERE column5 = 10 ORDER BY column5, column6;

SELECT * FROM t1 WHERE column5 = 10 ORDER BY column6;

This specific case of the query rewrite capability is called the pseudo 
order-by clause.
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– After the optimal table order was determined, the SQL ORDER BY clause 
could not be served via the same index used to process the query.

� This query was determined largely by Rule 3; the expected uniqueness of the 
join columns made the Customer table more desirable as a second join table, 
and the lack of filter criteria called for a sequential scan of the worst table first, 
the cust_calls (Customer Calls) table.

� A temporary file is required to support the SQL ORDER BY clause.

The third query in Example 10-7 on page 559 is contained between lines 0065 
and 0106. See the following:

� Query three references three tables, as seen on lines 0076 and 0077. 

� Customer is the dominant table in an outer join, line 0076. 

� The Orders table and Items table are both subordinate to Customer, line 
0077. Although, tables Orders and Items have a normal join relationship 
between themselves.

� Based on Rule 1, the Customer table will be processed first, as seen on line 
0091.

� Because Customer has no filter criteria, this table will be read sequentially. 
(Absence of filter criteria on Customer between lines 0078 through 0083.)

� Order was processed next due to Rule 2; it is joined directly with Customer.

� A temporary file is required to process the SQL ORDER BY clause, which is 
on Customer.lname. There was no index on this column, and certainly not 
one that was already in use to process Customer.

The fourth query contained in Example 10-7 on page 559 is contained between 
lines 0108 and 0129. See the following:

� This is a single table query, so table join order and join methods are not a 
concern. The remaining element to determine is table access method.

Note: Another specific query rewrite capability is transitive dependency. 
Transitive dependency is an algebraic term. In effect,

IF A = B, AND B = C, THEN, BY DEFINITION A = C

From the example above, this means,

� These two queries are logically equal, based on the 

principle of transitive dependency.

SELECT * FROM t1, t2 WHERE t1.col = t2.col ORDER BY t1.col;

SELECT * FROM t1, t2 WHERE t1.col = t2.col ORDER BY t2.col;
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� There are two filters on this table, as shown on lines 0115 and 0117.

– There is no index to support the filter on Stock.description, so this filter will 
not call for an indexed table access method.

– While there may have been an index on Stock.manu_code, this column is 
evaluated as an inequality; return everyone from the phone book whose 
name is not Mary Alice. That results in a lot of records and not a very 
selective filter. If there were an index on Stock.manu_code, it would not be 
used to process this filter based on lack of selectivity, (negative of index, 
poor selectivity of a filter).

� This leaves a table access method of sequential.

� A temporary file is required to process the SQL ORDER BY clause.

10.5.4  Rules 4 and 5: Table size and table cardinality
Most often, Rule 3 in the query optimizer determines table order. Even if no filters 
are present in the query, table joins are expected to be in the query. The 
selectivity (cardinality) of the join relationships will determine table order.

Rules 4 and 5 of the query optimizer are rarely observed. See the following:

� If Rules 1 through 3 cannot determine table order, then Rule 4 will be invoked. 
(Remember the rules are applied sequentially, until table order is 
determined.)

� Rule 4 is table size. Assume a two table join with all other factors equal, one 
of these two tables will be processed first based on the size of the two tables.

– Which table is read first is based on cost. It used to be true that the larger 
table would be processed and have an index built on it to process the join. 
Today, the smaller table is likely to be the one processed and have an 
index built upon it; because the smaller table produces a smaller index, an 
index which is more likely to fit in cache.

– The points above assume that neither table is supported via an index on a 
join column, which is most often the case.

Rule 5 is table cardinality. The word cardinality is seemingly used in a variety of 
ways in this IBM Redbook. Consider the following:

� Technically the term cardinality is defined to mean the number of elements in 
a set or group.

� In this IBM Redbook, we also discuss the cardinality between two SQL tables; 
that is, a one to many style relationship between a parent and then detail 
table, and others. Cardinality in this context means the numerical relationship 
between two data sets. If each state or province in a nation contains exactly 
200 cities, then the cardinality between province and city is 1:200.
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� In Rule 5 of the query optimizer, the phrase table cardinality refers to the 
table’s named order in the SQL SELECT FROM clause. Do not be overly 
concerned that table name order is a determining factor in the creation of the 
query plan. If a given query is determined by Rule 4 or 5, a number of other 
errors exist in the run-time environment, and it is likely that all queries are 
performing poorly.

The query optimizers from the various relational database software vendors 
operate via a set of guidelines that are based on sound engineering principles. 
The rules of a query optimizer are based on observed facts; facts such as 
indexed retrieval is generally faster than sequential table access, unless (...). 
Each vendor also uses algebraic formulas to assign costs to each operation, 
decision, and so on. These exact algebraic formulas are not published, and can 
be considered the proprietary and trade secret property of each vendor. Thus far, 
we have discussed the elements of these costs and formulas, and the logic and 
application behind these ideas. In the next section, we discuss various other 
query optimizer features that involve the idea of query costing.

10.6  Other query optimizer technologies
Thus far in this chapter, we have completed the following:

� Reviewed a reasonably complex and real world SQL SELECT example as a 
means to learn about query optimizers by example. This review included the 
most common query optimizer algorithms and tasks.

� Then we reviewed the five rules of a query optimizer with a number of 
simplistic SQL SELECT examples.

� Through all of this, we considered the idea of costing, which is the underlying 
foundation of all query optimizer behavior.

In this section, we are going to introduce (or review) various query optimizer 
topics including; query rewrite, pipelined sorts, (detailed) query optimizer hints, 
and other topics.

10.6.1  Query rewrite
During the query optimization phase, the query optimizer may change the syntax 
of the given SQL SELECT to one which is logically equivalent; meaning a query 
which returns the same data set, but with different syntax allowing for query 
processing in a more efficient manner. Thus far in this chapter, two query rewrite 
scenarios have been introduced. At this time, we review these query rewrites and 
a few new ones.
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Pseudo order by clause
Given a table, t1, with a composite index on column1 and column2, consider the 
following:

SELECT * FROM t1 WHERE column1 = 55 ORDER BY column2;

Since every record returned by this query has a column1 value of 55, this query 
could be rewritten as:

All queries in this block are logically equal:

SELECT * FROM t1 WHERE column1 = 55 ORDER BY column1, column2;

SELECT * FROM t1 WHERE column1 = 55 ORDER BY “55”, column2

SELECT * FROM t1 WHERE column1 = 55 ORDER BY “X”, column2;

These queries are logically equivalent; meaning they each return the same data 
set. The query optimizer will detect this condition and choose to use the 
concatenated (single) index on columns; (column1, column2). Since the data is 
read in collation (index sort order) sequence, no sorting needs to be performed 
on these records. They are automatically presorted and cost less to process.

Knowing that the query optimizer observe this conditions, and rewrites the query 
for better processing, should the application programmer manually write the 
query to explicitly make use of pseudo order by? Ten years ago the answer to 
this questions was yes. Today, perhaps nearly every query optimizer should 
catch this condition. Manually rewriting queries for optimization is a good idea 
certainly, unless their rewrite may make the syntax or purpose of the query 
unclear.
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Transitive dependency
Generally, every index contains columns from just one SQL table. Multi-table 
indexes, (indexes containing columns from two or more tables) are available in 
better relational database servers; these multi-table indexes are sometimes 
referred to as star indexes. Multi-table indexes are rare, and are often read only.

Consider the following:

These two queries are logically equal:

SELECT * FROM t1, t2 WHERE t1.col1 = t2.col1 AND 

t1.col2 = t2.col2

ORDER BY t1.col1, t2.col2;

SELECT * FROM t1,t2 WHERE t1.col1 = t2.col1 AND

t1.col2 = t2.col2

ORDER BY t1.col1, t1.col2;

Note: Generally, query processing has three logical phases; FJS, filter, then 
join, then sort. If the same (single) index used in the filter and join phases can 
also serve the group by and order by clause, then the query processor sort 
package does not need to be invoked; records are already being processed in 
sort order. This is referred to as a pipelined sort operation.

More commonly, queries do their filters and joins, and then have to be gated 
(held) and sent to the query processor sort package. This condition is known 
as a non-pipelined sort operation.

The first record produced in a pipelined query can be sent immediately to the 
application, since records are presorted. A non-pipelined query has to hold all 
records, and sort them before returning the first record. This is because the 
last record produced by the query during filtering and joining may sort as the 
first record to be returned to the application. Pipelined sorts can obviously give 
the appearance of a faster query, because of their first row first capability.

Few group by or order by clauses can be pipelined, as the need to filter and 
join rarely align themselves with the group by and order by. There are 
strategies to increase the likelihood of observing a pipelined query; for 
example, ensure that the columns in the order by clause match those of a 
composite index used to filter and join. (Add columns to the index to match the 
needs of filters, joins and sorts. The column order must match in both the 
index reference and order by clause.)
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The first query above lists columns from two or more tables in the ORDER BY 
clause. But, t2.col2 equals t1.col1, as stated in the WHERE clause. Therefore, 
the query can be rewritten as shown in the second example. The second query 
more clearly displays that a single index can process the order by clause, and 
hopefully, will match in an index used above for the join condition resulting in a 
pipelined sort.

Be algebraic definition, transitive dependency is represented as,

IF A = B, AND B = C, THEN, BY DEFINITION A = C

In the application of queries, consider the following:

These two queries are logically equal:

SELECT * FROM t1, t2

WHERE t1.col1 = t2.col1 AND t1.col2 = t2.col2

AND t1.col1 = 65 AND t2.col2 = 14;

SELECT * FROM t1, t2

WHERE t1.col1 = t2.col1 AND t1.col2 = t2.col2

AND t2.col1 = 65 AND t1.col2 = 14;

The message here is that the query optimizer can use transitive dependency to 
consider alternate, but logically equal, query plans. If an index supports t2.col1 
and t2.col2 but not both t1.col1 and t1.col2 (the index supports only t1.col1), 
transitive dependency may uncover a better query plan.

Semantic equality
Consider the following:

-- colPK is the primary key for table t1

SELECT DISTINCT colPK FROM t1;

SELECT colPK from t1;

Because the column list is known to produce a unique product set, either by 
unique column constraints or check constraints, the call for the DISTINCT 
keyword in the first SQL SELECT above is redundant and may be removed.

How would an example like the first SQL SELECT above ever occur? Very often 
user graphical reporting tools allow for operations to be checked (called for), 
when the given operations are unnecessary. (The user just checked the visual 
control because it was present.)
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Another example is shown. Consider the following.

These two queries are logically equal:

SELECT * FROM t1 WHERE t1.col1 > ALL (SELECT col2 FROM t2);

SELECT * FROM t1 WHERE t1.col1 > (SELECT MAX(col2) FROM t2);

In the second SQL SELECT statement, only one comparison is done for every 
record in table t1.

Decoding of SQL VIEWS
Consider the following,

CREATE VIEW v1 AS SELECT * FROM t1 WHERE code = “CB”;

SELECT * FROM v1 WHERE code = “CB”;

One of the tasks of the command parser or query optimizer is responsible for the 
decoding of any SQL VIEWS which the given SQL command may reference. In 
the example above, a redundant filter criteria is produced; the SQL VIEW already 
restricts (filters) the resultant data set as is requested in the SQL SELECT.

Some time ago, early in the technology cycle, SQL VIEWS were executed and 
had their results placed into a temporary table before the target SQL command 
would be processed. Example as shown:

The following example is no longer current (true)

CREATE VIEW v1 AS SELECT state.*, COUNT(*) FROM states, cities

WHERE state.stateCode = city.stateCode

GROUP BY state.stateCode;

The query above returns the columns from the state table, along with a count of 
the number of cities that state contains. Given a query equal to:

SELECT * FROM v1 WHERE stateCode = “IN”;

The query processor would first calculate the data set represented by the SQL 
VIEW; that is, it would read, group, and calculate counts for all 50 states. Then 
the query processor would read from this temporary table to process the SQL 
SELECT, a read of just one state, not all 50.

The above is no longer an accurate representation as to how a modern relational 
database server would process the example query. This example is mentioned 
as another example of the operations of query rewrite, and the benefit of 
decoding SQL VIEWS as part of parsing and query optimization.
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Encoding of SQL VIEWS
Generally, SQL VIEWS are logical structures; they represent SQL SELECT 
strings that front a number of physical SQL tables. In addition to providing a 
macro, or shorthand manner to access a number of tables, SQL VIEWS can also 
be used to provide unique security schemes. While SQL security allows the 
database administrator to restrict access on the table or column level (vertical 
security), SQL VIEWS that returns a subset of records within a table can be used 
to provide horizontal security. For example, Bob can only see records from a 
subset of states or provinces within a country, not all states and provinces.

Recently, SQL VIEWS have also become physical structures. Some relational 
database vendors call these structures materialized views, materialized query 
tables, or other similar names. The syntax of a given relational database vendor 
for this capability may be SQL CREATE MATERIALIZED VIEW, SQL CREATE 
TABLE {name} AS (SELECT ...), or another command. Below is an example of 
this type of command, this one is an SQL CREATE TABLE,

Approximate syntax

CREATE TABLE bad_account AS 

(SELECT customer_name, customer_id, a.balance cu

FROM account a, customers c

WHERE status IN ('delinquent','problematic', 'hot')

AND a.customer_id = c.customer_id)

DATA INITIALLY DEFERRED REFRESH DEFERRED ) BY DB2;

Since materialized views are real, physical storage structures, the query 
optimizer query rewrite feature can use these definitions to reduce processing 
load. If a given SQL SELECT calls to read from the native Account and 
Customers tables, as listed above, the query rewrite capability redirects the 
query to make use of the materialized view, thus saving the associated join 
costs.

Rewrite nested queries as joins
Given the following nested query:

SELECT * FROM t1 WHERE t1.col IN

(SELECT colx FROM t2);

One of two conditions will be present in the query above:

� The nested (inner) query will return zero or one records; a cardinality of M:1 
(many to one).
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� The nested (inner) query will return more than one record; a cardinality of 1:M 
(one to many).

If the query above has a cardinality of many to one, then the query can be 
rewritten as a standard join. Example as shown:

SELECT t1.* FROM t1, t2 WHERE t1.col = t2.colx;

If the query above has a cardinality of one to many, then a join between these 
tables can produce numerous t1 records where previously only one was 
produced. The query optimizer will consider the choice of:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.col = t2.colx;

Why consider the query rewrite at all? The data set produced inside the inner 
query, table t2, may be massive and may force the production of a temporary 
table. (Consider a more complex inner query with filters and possibly other table 
joins, removing the option of just reaccessing table t2 for every record in table t1, 
the outer table.)

Correlated subqueries
The query above was a nested query, (also referred to as a subquery). In short, 
the inner query needs to be executed only one time, (before processing the outer 
query). The inner query needs to be executed only one time, because the 
resultant data set is unchanging; it is the same for every record in the outer 
query.

A correlated subquery is a modification to a standard subquery. Correlated 
subqueries are prohibitively expensive, although they are a legal operation.

Listed below is an example of a correlated subquery:

SELECT * FROM t1 WHERE t1.col IN

(SELECT colj FROM t2 WHERE t2.col4 = t1.colz);

Note: The case of an IN or EXISTS clause is referred to as a semi-join. To 
process the (join), the record in the nested table needs merely to exist, it is not 
actually attached to the record of the outer table.

Note: Correlated subqueries are so costly that some relational database 
server products will return a special diagnostic code to the application when a 
correlated subquery is received. (The thought is that the application may then 
want to cancel the request for this operation.)
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Because the inner query makes reference to a column value from the out portion 
of the query, (in this case the inner query refers to column t1.colz), each record in 
the out portions of the query causes the inner query to be entirely re-executed.

The query optimizer query rewrite capability will attempt to change a correlated 
subquery to a standard join. However, in most cases, the correlated subquery 
needs to be removed by a modification to the underlying data model (a 
modification that we do not discuss here).

Due to query rewrite, below is an example of a correlated subquery which can be 
rewritten as a (non-correlated) nested query,

These two queries are logically equal

SELECT * FROM t1 WHERE t1.col1 = 10 AND t1.col2 =

(SELECT MAX (t2.col2) FROM t2 WHERE t2.col1 = t1.col1);

SELECT * FROM t1 WHERE t1.col1 = 10 and t1.col2 =

(SELECT MAX(t2.col2) FROM t2 WHERE t2.col1 = 10);

The example above is also an example of transitive dependency.

OR Topped queries
Consider the following:

AND topped query

SELECT * FROM t1 WHERE col1 = 4 AND col2 = 9;

OR topped query

SELECT * FROM t1 WHERE col1 = 4 OR col6 = 15;

The listing above shows two distinct queries; differing goals and differing 
resultant data sets. The difference between AND topped queries and OR topped 
queries is shown below:

� These are both single table queries. The primary task of the query optimizer 
is to determine the table access method.

� In the case of the first query, a single concatenated index on both t1.col1 and 
t1.col2 would allow for an indexed table access method. This is true because 
of the AND condition.

� In the case of the second query, the OR condition initially prevents the use of 
an indexed table access method.

– A single concatenated index on both t1.col1 and t1.col6 will not serve the 
query. Because of the OR condition, a record may have a t1.col1 value of 
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4 or a t1.col6 value of 15. The OR condition makes these two filter criteria 
to be separate conditions.

– A single index can serve the t1.col1 filtering needs, or the t1.col6 filtering 
needs, but not both.

– A single index can not serve both filter criteria because of the negation of 
index, non-anchored composite key. In effect, the OR topped query says, 
find everyone in the phone book with the last name of “Schwartz” or with 
the first name of “Arnold”. The phone book is not sorted (anchored) on first 
name.

� One solution to an OR topped query is to perform an OR-union transfer. 
Example as shown:

SELECT * FROM t1 WHERE col1 = 4

UNION 

SELECT * FROM t1 WHERE col6 = 15;

� A UNIONED SELECT allows for two or more distinct SQL SELECTS to be 
executed as though they are just one simple SQL SELECT. These two or 
more SQL SELECTS can be from the same or different tables. About the only 
requirement is that each participating SQL SELECT must return the same 
number of columns, with compatible data types (numeric to numeric, and 
character to character).

� An OR-union transfer should be considered when the following is observed:

– Each participant in the transfer makes use of an indexed table access 
method.

– The final query runs faster.

� By its syntax, a UNIONED SELECT will remove duplicates from the final data 
set; that is, from the example above, a record may be both t1.col1 = 4 AND 
t1.col2 = 15. However, that (single) record cannot be returned to the 
application twice just because of a query rewrite operation.

� A UNION ALL SQL SELECT will not call to remove duplicates from the 
participating queries and, therefore, is more efficient than a standard 
UNIONED SELECT. IF it is determined that each participating query 
produces a distinct data set, they by all means issue the query as UNION 
ALL.

Note: One question is whether or not a relational database supports a 
multi-index scan. That is, can the relational database natively use two or 
more indexes as a table access method for one table? And, under what 
circumstances is it allowed? Multi-index scan needs to have the ability to 
remove duplicate records from the (single) source table.
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Redundant join elimination
Consider the following,

SELECT * FROM t1, t2, t3 WHERE t1.col = t2.col 

AND t2.col = t3.col AND t3.col = t1.col;

There are redundant join criteria in the example SQL SELECT above. Since t1 
joins with t2, and t2 joins with t3, the query processor does not need to join table 
t3 to table t1. The query rewrite capability of the query optimizer will consider the 
table t3 to table t1 join path, but will remove at least one of the join paths since it 
is unnecessary.

Shared aggregate calculation
Consider the following:

The first query has 2 SUM() and 1 COUNT()

The second query, produced by the query optimizer

query rewrite, has 1 SUM() and 1 COUNT()

Remember that an AVG() is a SUM() / COUNT)()

Original query

SELECT SUM(col) AS s, AVG(col) AS s FROM t1;

Query rewritten by query optimizer

SELECT s, s / c FROM (SELECT SUM(col) s, COUNT(col) c

FROM t1);

The query optimizer query rewrite capability will detect the shared aggregation 
opportunity and rewrite the first query above, as displayed in the second query 
above. This example also displays an optimal application of dynamic table 
reference in the FROM CLAUSE to a SQL SELECT. This technique can be used 
extensively in business intelligence style queries.

Operation movement
Consider the following,

SELECT DISTINCT * FROM t1, t2 WHERE t1.col = t2.col;

If the column t2.col is known to be unique (it has a unique index constraint placed 
upon it), then the DISTINCT set operand can be performed on table t1 alone. 
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The DISTINCT set operand need not be performed on the larger (wider) data set 
which is the product and tables t1 and t2 having been joined.

In this manner, DISTINCT set operands can be pushed lower into the execution 
of the query plan, or higher; whichever results in a lower total query cost.

Predicate translation
Consider the following:

Code Fragment 1

WHERE NOT (col1 = 10 OR col2 >3);

Code Fragment 2

WHERE col = YEAR(“1990-04-01”);

The first example can be rewritten as:

WHERE col1 <> 10 AND col2 <= 3;

This query optimizer query rewrite operation removes the OR topped nature of 
the query and increases likelihood of an indexed table access method.

The second example is rewritten as:

WHERE col = 1994;

This rewrite removes the function invocation on every record that is processed; 
further, the result of this given function was an integer data type which is more 
efficient than the DECIMAL(16) or structure that often represents SQL 
DATETIME column types.

Consider the following:

SELECT * FROM t1 WHERE integerColumn = “123”;

The query optimizer rewrite capability translates a literal expression into an equal 
data type whenever possible; “123” is a numeric data type and is converted to an 
INTEGER to facilitate the join with greater efficiency. The query optimizer query 
rewrite capability will encrypt literal value filter criteria to compare with encrypted 
column values when the encryption key is set at the table level. This operation is 
impossible for systems or applications that encrypt column values at the record 
level.

Note: Most encrypted data types take 33% or more disk storage to record 
than non-encrypted data. Omitting the password hint that accompanies 
individual column values can eliminate as many as 50 bytes per record.
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10.6.2  Multi-stage back-end command parser
Technically, in this entire chapter we discuss the query optimizer (which also 
implies discussion of the query processor). The multi-stage back-end is headed 
by a command parser, and there are certain technologies you can employ at the 
parser phase that will also improve SQL performance.

Bypassing the command parser
Consider the following:

Mixture of application program code and SQL

FOR i = 1 to 1000

INSERT INTO t1 VALUES (i);

END FOR

The program code fragment above contains a mixture of application program 
code and embedded SQL commands, as many SQL based applications do. On a 
given system with a given performance, imagine that the program loop above 
executes in 60 seconds. Now consider the following:

Mixture of application program code and SQL

PREPARE s FROM “INSERT INTO t1 VALUES (?)”;

FOR i = 1 TO 1000

EXECUTE s USING i;

END FOR

While the first loop executes in 60 seconds, the second loop may execute in as 
little as 12 or 20 seconds. Why this is occurring is detailed in the list below:

� The application program will contain a mixture of program code and SQL 
statements. As a given SQL statement is encountered, this SQL statement is 
passed to the relational database server for processing via the agreed upon 
communication protocol. Only SQL commands are passed to the relational 
database server. The relational database server has no knowledge of 
non-SQL program code. The relational database server has no idea, for 
example, that the program has entered a looping construct and is about to 
execute the very same command 1000 times in a row.

� In the first loop listed above, each of 1000 SQL INSERT commands is sent to 
the SQL command parser as though the database server has never spoken 
to the application before. Each command has the following performed:

– The statement is parsed for syntax errors.
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– Any referenced tables and columns are checked to see if they exist, and to 
see if the given user (or role) has permission to perform the requested 
operation.

– Any semantic (data) integrity constraints are retrieved, as well as any 
triggers, check constraints, default column constraints, primary and 
foreign key definitions, and others.

– And more.

� Whether the loop moves from 60 seconds to execute to 12 seconds or 20, is 
dependent on the amount of time that was spent in the command parser, or 
was due to communication overhead.

� The command parser can be bypassed second and subsequent times, by 
registering SQL commands with the command parser for future use.

– The SQL PREPARE statement registers the given command with the 
command parser.

– At this point, the original INSERT is invoked via the SQL EXECUTE 
statement to the proper statement id.

– The location of host variables is preserved via the question mark place 
holders, and then filled via the USING clause on execute.

SQL INSERT cursors (buffered inserts)
Most application programmers encounter an SQL CURSOR the first time they 
need to execute a SQL SELECT statement that returns more than one record 
from the database server. In this case, the SQL CURSOR manages the transport 
of the multi-row result set from the database server to the application client. The 
SQL CURSOR is like a gondola transporting records from the bottom of the 
mountain to the top. But, gondolas go both directions. SQL CURSORS can also 
be used to send records from the application to the database server.

Consider the following:

PREPARE s FROM “INSERT INTO t1 VALUES (?”);

DECLARE c CURSOR FOR s;

OPEN c;

Note: Most modern relational database server products offer SQL statement 
cache; that is, a listing of the 100 or so most recently received SQL 
commands. Given this feature, is it still necessary to use SQL PREPARE for 
optimization? Yes. Any newly received SQL command has to be parsed and 
compared to those which are resident in the cache. The SQL PREPARE 
statement bypasses this operation also.
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FOR i = 1 to 1000

PUT c USING i;

END FOR

FLUSH c;

CLOSE c;

An SQL INSERT CURSOR is one that fronts a SQL INSERT statement, as 
opposed to the standard (expected) SQL SELECT statement. An SQL INSERT 
CURSOR uses the SQL command verbs, PREPARE, DECLARE, OPEN and 
CLOSE, much like a standard SQL SELECT CURSOR. New commands include 
PUT and FLUSH.

All SQL CURSORS are specified to be a given size, which determines how many 
records it can contain. The SQL PUT verb places records in a buffer on the 
application client side of this Client/Server topology. As the communication buffer 
associated with this SQL CURSOR fills, the buffer is automatically flushed; 
meaning, that all records are sent from the client to the server at once. This is 
how a SQL INSERT CURSOR achieves its performance gain; in effect, the SQL 
INSERT CURSOR reduces the number of transports between the client and the 
server. Because this communication buffer may be left partially full after the 
completion of the looping construct, the buffer is manually flushed to ensure that 
the last, potentially partially full buffer is sent to the server.

The most difficult aspect of using SQL INSERT CURSORS is the error recovery. 
When records are sent one at a time, error checking is rather simple. When 
records can be sent variably and in larger numbers, error recovery is just a bit 
harder, but still very manageable.

From the example above, the original 60 second SQL INSERT loop could be 
moved to two or three seconds of execution time, an admirable gain.

Multi-statement prepare
Similar to the first example of bypassing the command parser above, prepared 
statements can actually contain numerous SQL commands. Consider the 
following:

PREPARE s FROM “INSERT INTO t1 VALUES (?);

UPDATE t2 SET (col4) = (?) WHERE col1 = (?);”

Note: Not every relational database vendor supports SQL INSERT 
CURSORS, or they may use different terminology and commands to 
accomplish the same effect.
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EXECUTE s USING v1, v2, v3;

In the example above, two separate SQL commands are expected to be 
executed together; that is, the application always needs these two distinct 
statements to run one after another. A reduction in the number of 
communications to the relational database server can be observed by preparing 
a multi-statement.

More on SQL statement cache
SQL SELECT statements that return more than one record, must be managed 
with a SQL CURSOR. The SQL SELECT associated with the SQL CURSOR is 
then registered with the command parser, and second and subsequent uses of 
this SQL CURSOR will bypass the command parser. SQL SELECT statements 
that do not return more than one record would include:

� Basically select only aggregates with no GROUP BY:

SELECT COUNT(*), MAX(col), MIN(col) FROM t1;

� Select on equality to primary key column:

SELECT * FROM t1 WHERE colPK = 17;

SELECT * FROM t1 WHERE colPK = 19;

From the perspective of the SQL statement cache subsystem, the last two SQL 
SELECT statements are unique, and do not allow for statement reuse (the ability 
for the statement to be recalled from the cache). We recommend you instead use 
host variables as shown in the following example:

� Host variable H set before SQL invocation

SELECT * FROM t1 WHERE colPK = :H ;

10.6.3  Index negation
In general, index negation refers to the condition of having a perfectly useful and 
on line (pre-existing) index data structure, but for some reason that index may 
not be used to process a filter, join, or other task. Consider the following:

� Negation of index, non-initial substring; given the example,

Note: Of the two SQL SELECTS shown above, use of the first SQL SELECT 
is preferred. While the primary key on table t1 may be colPK today, that may 
change. This often happens when two companies merge; the new primary key 
in the database is then pre-appended with a code for company, origin, or 
similar. While this may seem an unlikely event, the task of having to recode 
(port) thousands or millions of lines of SQL program code is not desirable.
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SELECT * FROM phoneBook WHERE lastName LIKE “%son”;

If an index exists on the phoneBook.lastName column it cannot be used 
because of a non-initial substring condition. Imagine trying to find every 
person in the phone book where the last name ends in “son”, such as 
Hanson, Johnson, and Williamson. While the phone book is sorted by last 
name, it is not sorted by the last three characters of the last name. You would 
have to read the phone book sequentially and in its entirety to satisfy this 
query.

� Negation of index, non-anchored composite key. Consider the example:

SELECT * FROM phoneBook WHERE firstName= “Chuck”;

While the phone book is sorted by the concatenation of last name, then first 
name, it is not sorted by first name alone. If you need to find every person in 
the phone book by first name, you have to read the entire phone book.

The only exception to a non-anchored key condition is when all columns in 
the column list are members of the concatenated index. The phone book 
example fails to carry this point. Since an index is a vertical slice of a table, (it 
contains a subset of columns and all rows), the non-anchored read of just first 
name is better processed by sequentially scanning the (last name, first name) 
index; better than sequentially the SQL table proper which is larger (wider).

� Negation of index, (poor) selectivity of filter. Consider the examples:

SELECT * FROM phoneBook WHERE lastName > “Ballard”;

SELECT * FROM phoneBook WHERE lastName != “Comianos”;

Both of these queries will return 90-98% or more of the phone book. Better to 
suffer through sequentially scanning the phone book, than to use the index 
with the physical disk I/O that incurs, and still return 98% of the phone book.

The NOT often removes any selectivity of a filter of join criteria, by the nature 
that it too negates.

Partial index negation
A query similar to that shown below will cause some vendor relational databases 
to use only the leading column of a concatenated index. For example:

� SQL CREATE INDEX of concatenated (multi-column) index:

CREATE INDEX i1 ON t1 (col1, col2);

SELECT *

FROM t1

WHERE col1 > 50
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AND col2 = 4;

Because of the range operand on the leading column in the concatenated index, 
the index would be used to process the filter criteria on column col1 (if selectivity 
of this filter calls for this operation). Then the data page from the SQL table 
proper is fetched. Then the filter criteria for column col2 was processed from the 
data page. This behavior can be detected by reviewing the index and filter 
utilization in the text representation of the query plan. Basically not having the 
capability was just a lack of functionality in the relational database software 
product of a given vendor.

10.6.4  Query optimizer directives (hints)
Most modern relational database vendors offer the ability to influence the query 
plan that the query optimizer produces. Some vendors offer the ability to promote 
(call for, or force) certain elements of the query plan, or just demote (prevent) 
certain elements, or the ability to both promote and demote. Most queries that 
you will encounter which require manual tuning (creation of optimizer directives) 
will need help because the query plan is making a poor choice. We recommend 
that you use query optimizer directives to demote poor query plan paths. Do not 
fall into the practice of writing query optimizer directives that promote the 
(currently) more optimal path. As the run-time environment changes (improves), 
new more optimal query plan choices may arrive.

Query optimizer directives can be organized into categories which, not 
surprisingly, equal the basic categories of operations that a query optimizer 
considers. These types of optimizer directives include:

� Table join order
� Table access method
� Table join method
� Optimization goal

Note: In the query optimizer case study in 10.2, “Query optimizer by example” 
on page 503, we reviewed a canned application system; that is, one where the 
source code to the application may not be accessible to us (the database 
administrators). Some relational database vendors offer the ability to set query 
optimizer directives in newly created files (or system catalogs) which are 
external to any canned application system. Needless to say, this is a very 
useful feature when supporting canned applications.

You can also embed query optimizer directives inside SQL VIEW definitions; 
perhaps leave the base table in place, and create a SQL VIEW entitled, 
“v_faster_table”, which accesses a given table while demoting poor query plan 
choices.
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� Query rewrite directives

Generally, query optimizer directives are embedded inside an SQL command 
statement as comments; in other words, the query optimizer directives are not 
part of the declarative portion of the SQL command. Consider the example:

SELECT --+ This is a single line comment, begins with “--+”

* FROM t1;

SELECT { This is a multi line comment,

extending for multiple lines and surrounded by

curly braces }

* from t1;

SELECT /* This is also a multi line comment,

surrounded by Java and C language style markers */

* FROM t1;

While different relational database vendors may use differing and specific query 
optimizer directives syntax, below is a representative offering of the standard 
tags and their associated effect.

ORDERED, INDEX, AVOID_INDEX, FULL, AVOID_FULL
A call to “ORDERED” states that the table join order should equal that as stated 
in the SQL FROM clause of the SQL SELECT statement. “FULL” states that the 
named tables, enclosed in parenthesis should use a table access method of 
sequential scan, while “AVOID_FULL” states the opposite. “INDEX” and 
“AVOID_INDEX” do the same for indexes. Example as shown:

SELECT --+ ORDERED, AVOID_FULL(e), INDEX(i2)

* 

FROM employee e, department d

WHERE e.deptno = d.deptno AND e.salary > 100000;

The query optimizer directive above states that the SQL tables should be joined 
in order of Employee to Department. Also a call is made to use the index entitled 
“i2”, whichever table maintains that index. If the named index does not exist, that 
specific query optimizer directive will be ignored.

Multiple entries inside the parenthesis are separated with commas. If necessary, 
the table names should be prefaced with the owner or schema name.
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Combination of both “AVOID_FULL” and “AVOID_INDEX” on a given SQL table 
can be used to encourage a hash join. (Remember we prefer to demote bad 
choices, not explicitly promote the currently best choice.)

INDEX_ALL
“INDEX_ALL” is the query optimizer directive to invoke multi-index scan. For 
example:

� OR topped query, would benefit from multi-index scan

SELECT --+ INDEX_ALL (ix_on_col1, ix_on_col2)

* 

FROM t1 

WHERE col1 = 5 OR col2 = 15; 

USE_NL, AVOID_NL, USE_HASH, AVOID_HASH
“NL” is an abbreviation for the nested loop (table) join method. Each of these 
query optimizer directives are for table access methods. (The current vendor we 
are reviewing did not document query optimizer directives for a sort-merge table 
join method, or a push down semi-hash join. This vendor did offer other controls 
to promote or demote these table join methods, but they are not documented 
here.) 

In the case of a hash table join method, an SQL table must be identified as the 
SQL table upon which the hash index is built, or should it be the table to access 
the hash index execute to join? The “BUILD” label marks the table upon which 
the hash index is built. The “PROBE” label marks the table that reads the hash 
index. For example:

� Hash index will be built on Dept table

SELECT --+ USE_HASH ( dept /BUILD )

name, title, salary, dname

FROM emp, dept, job

WHERE loc = “Almaden”

AND emp.deptno = dept.deptno

AND emp.job = job.job;

This vendor also has a “/BROADCAST” label for a hash join used in a clustered 
database environment. A call to “/BROADCAST” will copy tables built with hash 
indexes under 100 KB to all participating nodes in query. This is a useful feature 
to place (copy) smaller dimension tables to all nodes, thus encouraging 
co-located joins. (Co-located join is a clustered database concept. In effect, 
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co-located joins are those where both sides of the join pair are local to one 
(physical) node. This eliminates or reduces internodal traffic for joins.)

“USE_NL” or “AVOID_NL” call for the nested loop table join method to be used, 
or not used, with regards to the named tables.

FIRST_ROWS, ALL_ROWS
Operations such as creating a hash index to access a table, or sorting a given 
table to allow for a sort-merge table join method, require an amount of up front 
query processing that is time spent before any records may be returned to the 
user application. A “FIRST_ROWS” query optimizer directive, will avoid query 
plans with these types of up front costs, and instead give preference to query 
plans that return records more quickly, if only initially (first record, versus total 
data set performance).

From the discussion on pipelined sorts versus non-pipelined sorts, held earlier, 
this category of query optimizer influencer will not be viewable to the user 
application if records have to be gated (held), to complete a sort operation. 
Under these conditions, the query optimizer may negate this specific query 
optimizer directive.

Following are the results a query received with no query optimizer directives:

� This output has been edited

SELECT * FROM t1, t2

WHERE t1.col = t2.col

Estimated Cost: 125

Estimated # of Rows Returned: 488

1) Abigail.t2: SEQUENTIAL SCAN

2) Abigail.t1: SEQUENTIAL SCAN

DYNAMIC HASH JOIN

Dynamic Hash Filters: Abigail.t2.col = Abigail.t1.col

This same query is then executed with a query optimizer directive of 
“FIRST_ROWS”. The following are the results:

� This output has been edited

SELECT --+ FIRST_ROWS

* FROM t1, t2

WHERE t1.col = t2.col

Estimated Cost: 145
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Estimated # of Rows Returned: 488

1) Abigail.t1: SEQUENTIAL SCAN

2) Abigail.t2: INDEX PATH

(1) Index Keys: col

Lower Index Filter: Abigail.t2.col = Abigail.t1.col

NESTED LOOP JOIN

We see that the cost is higher for the second query, because of the (CPU) 
intensive nested loop (table) join method. While the cost is higher on the second 
query, and the total data set performance may take more time, the first record 
returned will occur measurably faster than that in the first query, which must first 
build a hash index.

NESTED
By default, the query optimizer will attempt to eliminate nested queries 
(subqueries) and correlated subqueries. The query optimizer directive “NESTED” 
disables that capability. “NESTED” is one query optimizer query rewrite directive.

Optimizer directives not shown
While query optimizer directives are measurably complete, there are still a few 
query plan-related decisions that are not set via query optimizer directives. As 
examples:

� Whether a sort operation happens entirely in memory or overflows to disk is a 
function of the amount of shared or program memory that is allocated to the 
query. This, generally, is not set via query optimizer directives.

� The degree of parallelism is determined automatically by most vendors based 
on:

– Whether records are locked as part of this query. When locking, most 
vendors will demote parallelism to prevent locking too many records 
concurrently, and hurting overall system throughout and concurrency.

– The number of source and target drives. If you have 14 CPUs, but all of 
the tables are being read from one hard disk, how much parallelism do 
you actually require? If you are performing an unload of data to a single 
ASCII text file, how much parallelism do you actually require?

– And as implied above, if you only have one CPU, how much parallelism do 
you require beyond parallel table scans?

– The presence of SQL SELECT TRIGGERS can prevent not only 
parallelism, but also the transfer of numerous records per each buffer 
transport inside the SQL CURSOR.
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– The number of database disk drives designated (allowed) for sort 
operations; SQL SELECT DISTINCT, SQL SELECT ... UNION ..., SQL 
GROUP BY, SQL ORDER BY, hash index creation, and others.

Example query plan with query optimizer directives
Consider the following:

� This file has been edited for clarity:

SELECT { +ORDERED,

INDEX ( emp ix1 ),

FULL ( job ),

USE_HASH ( job /BUILD ),

USE_HASH ( dept /BUILD ),

INDEX ( dept ix3 )

}

j.*, d.*

FROM emp e, job j, dept d

WHERE e.location = 1

AND e.jobno = j.jobno

AND e.deptno = d.deptno

AND d.location = “MILWAUKEE”

DIRECTIVES FOLLOWED

ORDERED

INDEX ( emp ix1 )

FULL ( job )

USE_HASH ( job /BUILD )

USE_HASH ( dept /BUILD )

INDEX ( dept ix3 )

DIRECTIVES NOT FOLLOWED:

Estimated Cost: 963

Estimated # of Rows Returned: 2
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1) Abigail.emp: INDEX PATH

Filters: Abigail.emp.location = “Milwaukee”

(1) Index Keys: empno jobno deptno location (Key-Only)

2) Abigail.job: SEQUENTIAL SCAN

DYNAMIC HASH JOIN

Dynamic Hash Filters: Abigail.emp.jobno = Abigail.job.jobno

3) Abigail.dept INDEX PATH

(1) Index Keys: location

Lower Index Filter: Abigail.delp.location = “Milwaukee”

DYNAMIC HASH JOIN

Dynamic Hash Filters: Abigail.emp.deptno = Abigail.dept.deptno

Additional comments:

� With the ORDERED query optimizer directive, table order is equal to that 
listed in the SQL FROM clause; Emp, then Job, then Dept.

� Hash indexes are built on Job and Dept as called for in the USE_HASH() 
directive.

� With no filter on table Job, the hash index is built on every record in the table; 
therefore, the sequential table access method. (This does not qualify as a 
second table being sequentially scanned inside of one SQL SELECT, since 
this table access method is used only to build the hash index.)

� An index is used to build the hash index on table Dept, as called for in the 
“INDEX ( dept ix3 )” directive.

� The table access method on table Emp is indexed, for which it was called. 
This access method is also key only, which the query optimizer detected the 
opportunity to do so. (All necessary columns from table Emp were part of a 
usable index, the index used to access that table.)
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10.6.5  Data distributions
Data distributions was presented in “Data distributions” on page 524. Here we 
present additional information.

Filter (predicate) correlation also known as predicate inference
Consider the following:

� Query one, distinctiveness of filters can be multiplied

SELECT * FROM autos WHERE make = “CarMaker” and model = 
“CarModel”;

� Query two, distinctiveness can not be multiplied

SELECT * FROM addresses WHERE cityName “Smithtown”

AND streetName = Main”;

In an Autos table with 100,000 records, 10% of which are CarMakers, and only 
CarMaker makes the CarModel (one of six models made by CarMaker), then the 
filter on table Autos can be expected to return 1/10 times 1/6 of 100,000 records. 
These two filters have a strong correlation.

In an Addresses table with 100,000 records, and 10% of the cities are named 
“Smithtown”, and 1/6 of the streets are named “Main”, one should not make any 
assumption about the correlation of these two filters; nearly every town in 
America has a street named “Main” (or “High” street if you prefer).

This is an area where data distributions can help. Data distributions can be 
gathered on indexed or non-indexed columns, individual columns, or THEN 
groupings of columns. Generally, the query optimizer will assume that it can 
multiply the selectivity of predicates, as shown in the first SELECT example 
above with Autos. A data distribution on both the cityName and streetName 
columns in Addresses would correctly inform the query optimizer that it should 
not consider adding the selectivity of these two filters.

Other applications of data distributions
By default, most query optimizers know the number of records in a table, and the 
number of distinct values in an index. Given a table with 1000 records, and a 
unique index, that index contains 1000 distinct values (by definition). The 
optimizer also knows the number of distinct values in a duplicate index. (The 
optimizer also knows the minimum and maximum values of each index, as well 
as the second minimum and second maximum.)

Most query optimizers, by default, assume an even distribution of key values 
within a given range. That is, it assumes that an equal number of persons exist 
on every continent (land mass) on planet earth. Given the following:
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SELECT * FROM worldPopulation

WHERE continent IN (“Antarctica”, Australia”);

SELECT * FROM worldPopulation

WHERE continent in (“Asia”, “Europe”);

The query optimizer would, by default, consider the selectivity of these two 
queries to be equal. Since the second query returns a very large percentage of 
the entire contents of the Continent table, this query would be better served by a 
sequential scan table access method (negation of index, poor selectivity of filter). 
The first table should use the index.

Data distributions inform the query optimizer of the selectivity of specific values in 
an indexed or non-indexed column. This additional information helps the query 
optimizer choose better query plans.

Another application of data distributions is for concatenated indexes. By default, 
the query optimizer knows the uniqueness of the entire index (or perhaps only a 
small number of leading columns). Not having this data was one contributor to 
the error in the query plan reviewed in 10.2, “Query optimizer by example” on 
page 503.

The selectivity of filters in general, is calculated using guidelines similar to those 
below (selectivity is represented by the value (F), and EXPRESSIONS are 
represented by the bulleted condition):

� indexed_column = LITERAL_VALUE

indexed_column IS NULL (which is a a literal value)

F = 1 / (number of distinct keys in index)

� t1.indexed_olumn = t1.indexed_column

F = 1 / (number of distinct keys in the larger index)

� indexed_column > LITERAL_VALUE

F = (2nd-max - LITERAL_VALUE) / (2nd-max - 2nd-min)

� indexed_column < LITERAL_VALUES

F = (LITERAL_VALUE - 2nd-min) / (2nd-max / wnd-min)

� non_indexed_column = LITERAL_VALUE 

F = 1 / 10

Note: Some relational database software vendors count every distinct value in 
a column, or samples therein. Some vendors organize this counting into 
distinct ranges, sometimes called quantiles.
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� non_indexed_column > LITERAL_VALUE

F = 1 / 3

� non_indexed_column LIKE {STRING EXPRESSION}

F = 1 / 5

� EXISTS {subquery}

F = 1, if subquery estimated to return more than zero rows, else 0

� NOT {EXPRESSION}

F = 1 - F {EXPRESSION}

� EXPRESSION1 AND EXPRESSION2

F = F ( EXPRESSION1 ) union F ( EXPRESSION2 )

� EXPRESSION1 OR EXPRESSION2

F = F ( EXPRESSION1 ) + F ( EXPRESSION2 ) -

( F ( EXPRESSION1 ) union F ( EXPRESSION2 ) )

� non_indexed_column IN LIST

Treated as an OR, OR, OR for each item

The primary purpose of offering the list above is to demonstrate the coarseness 
of query optimizer statistics regarding selectivity of filter and join criteria without 
data distributions.

10.6.6  Fragment elimination, multidimensional clustering
For all that SQL provides, it does little in the area of the physical storage of data; 
in other words, how tables and indexes are physically organized on the hard disk. 
SQL tables and indexes are logical structures, that, at some point, become 
physical bytes on a collection of disk pages. How are these pages to be 
organized?

The earliest relational database server products placed both (normal) table data 
and index data inside the same physical disk space allocation. Modern relational 
database server products place normal table in a physical allocation by itself, and 
then each individual index in its own separate physical disk allocation. This 
newer convention allows for like data to be contiguous; that is, index data from a 
given index is contiguous, allowing for read ahead scans. The data from the table 
proper is also contiguous, also allowing for read ahead scans. And all of the 
behavior increases the physical I/O cache rates.

Records in the SQL table proper are allowed to be in random sequence. While 
not explicitly stated, this is a base assumption to the governing of SQL tables. 
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Most vendors offer a clustered index operation; that is, generally in a one time 
only operation, the data in the table is physically sorted (written) in the collation 
sequence of one of the indexes found to exist on that table. (A given list of data 
can only be truly sorted in one manner, based on one hierarchy.)

Splitting a tall table
Given a table with three years of data, but having the majority of queries 
executed against data created in the last 90 days, creates an interesting 
opportunity. Many years ago, the database administrator would implement a 
design pattern, referred to as splitting a tall table (tall, meaning having many 
data records). 

When splitting a tall table, one table contains the data from the last 90 days. As 
these records age, they are deleted from the 90 days table and inserted into the 
history table. Queries targeting the last 90 days of data read from just one table. 
Queries that need data from the full date range execute a SQL UNION ALL 
query. For example:

� UNION automatically removes duplicate records, but UNION ALL does 
not. Since records are either in one table below but not both, we can 
execute a UNION ALL query which is more efficient:

SELECT * FROM recentTable

UNION ALL

SELECT * FROM historyTable;

You can instruct modern relational database servers to perform this type of 
activity automatically.

Table partitioning
The original phrase given to the practice table partitioning was fragmenting a 
table. Generally, and in the area of disk storage, fragmentation is a term with 
negative connotations. Still, once a phrase is released it is often hard to 
recapture. The relational database industry calls this idea both table 
partitioning and fragmenting tables.

With table partitioning, a table can be physically organized by the value of a 
column or set of columns. These columns are expected to be those which are of 
importance to critical queries. For example:

� Sample SQL CREATE TABLE and SELECT:

CREATE TABLE t1

(

col1 INTEGER,
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col2 INTEGER

)

FRAGMENY BY EXPRESSION

col1 < 100 IN driveSpace1,

col1 >= 100 IN driveSpace2,

col1 >= 200 IN driveSpace3;

SELECT * FROM t1 WHERE col1 = 150;

A “driveSpace” is a non-SQL object. In this case, driveSpace is the concept of a 
distinct disk storage location. Relational database vendors call these entities 
chunks, volumes, containers, and perhaps other terms.

Given the SQL CREATE TABLE statement above, the relational database server 
automatically places records in a specific driveSpace determined by the value in 
col1. When the query is received as shown above, the relational database server 
(the query optimizer) can perform fragment (partition) elimination; that is, we do 
not need to access any records in “driveSpace1” or driveSpace3”, because they 
contain no records with a col1 value of 150.

These are not indexes. This is similar to a free and omnipresent natural index. 
You can automatically reduce the amount (table size) of the records to 
processed based on how the table is organized on the hard disk.

Most vendors allow data in a table to be partitioned, as well as partitioning each 
index. See the following:

� Partitioning is allowed on numerous columns, not just one column.

� There are expression operands to determine driveSpace, as well as hash and 
others.

� Specifying expression operands can be wordy, but they serve both filter 
equalities and ranges. Hash value partitioning does not serve range filters 
well at all since the column values are essentially rotated through the 
driveSpaces.

� Under the best circumstances, these partitions can be added and removed 
from the table in full or nearly full multi-user mode. Since unique indexes have 
to provide a unique data integrity constraint, often these are the culprit as to 
whether these partition attach operations are zero or low cost.

The query optimizer automatically calculates which table partitions have to be 
examined or not, and these costs are considered in the determination of the final 
query plan. This basic operation is referred to as fragment elimination.
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Given table partitioning and an SQL CREATE table as shown below, consider 
the following:

CREATE TABLE t1

(

col1 INTEGER,

col2 INTEGER

)

FRAGMENY BY EXPRESSION

col1 < 100 AND col2 < 100 IN driveSpace1,

col1 < 100 AND col2 >= 100 IN driveSpace1b,

col1 >= 100 AND col2 < 100 IN driveSpace2,

col1 >= 100 AND col2 >= 100 IN driveSpace2b,

col1 >= 200 AND IN driveSpace3;

SELECT * FROM t1 WHERE col2 = 150;

Given the above run-time environment, the query optimizer must call to examine 
driveSpaces 1b, 2b, and 3, to find records with a col2 value of 150. 

Multidimensional clusters
One vendor in particular has a different take on table partitioning. It was stated 
earlier that any given data set can have only one concurrent sort order. This is 
true. Multidimensional clusters are like a multi-level table partitioning 
implementation. Multidimensional clustering uses specific column values to 
automatically store records in distinct drive areas. A multidimensional cluster is 
created with syntax similar to:

CREATE TABLE t1

(

col1 INTEGER,

col2 INTEGER

)

ORGANIZE BY (col1, col2);

The relational database server will automatically create and enforce a distinct 
disk space allocation for each unique combination of col1 and col2 values. That 
means that each of the data pairs (1,1), (1, 2), and (2, 2) go into their own distinct 
disk space allocation. (Three separate disk space allocations.)
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Standard table partitioning is viewed by some to be too much work, with its 
precise syntax determining record location by value expression or hash. 
Multidimensional clustering involves much less work, but better serves columns 
with few distinct values, since each distinct value causes a new disk space 
allocation.

Table partitioning, SQL VIEWS, and query rewrite
Consider the following SQL VIEW:

CREATE VIEW v1 (col1, col2, col3, col4)

AS

SELECT a, b, c, d

FROM t1

WHERE ...

UNION ALL

SELECT e, f, g, h,

FROM t2

WHERE ... ; 

Given any data integrity check constraints or table partitioning expressions that 
may be in place on these underlying tables, the query optimizer query rewrite 
feature may remove specific filter criteria from any SQL SELECT accessing this 
view, since these filter criteria are known to be redundant (unnecessary).

10.6.7  Query optimizer histograms
Query optimizer histograms are the idea that the query optimizer could form a 
query plan with its associated cost, and record this plan and expected cost for 
later reference. If the given query plan did not perform as expected, then the 
query optimizer might later experiment and try a different query plan to see if 
query performance can improve. This is not artificial intelligence since no new 
algorithms are being created. This is merely the query optimizer recording costs 
to add to that data which it considers in the creation of a query plan.

While query histograms might someday be delivered, thus far they have proven 
too costly to include in current relational database server products. Having also 
to consider histogram data in the calculation of a current query plan takes 

Note: The term dimensional in the phrase multidimensional clusters has no 
relationship to the phrase dimensional data modelling.
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additional time and resource. Without histograms, the current query optimizer 
makes the most optimal choice 98% or more of the time, it seems. If not, you still 
has query optimizer directives to rely upon.

10.7  Summary
In this chapter we have presented significant detailed information about the topic 
of query optimizers. This can help you understand how to create better data 
models and how to better format and store your physical data. You are working 
to “get your data in” to the data warehouse, but doing so while you keep in mind 
that it must be done in such a way that enables you to maximize you capability to 
efficiently and effectively “get your data out” of the data warehouse to support 
your BI environment.

To get started on that path, this is an excellent time to continue on with 
Chapter 11, “Query optimizer applied” on page 599. Here you will find help how 
to put the knowledge from this chapter into action. So, on you go.
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Chapter 11. Query optimizer applied

In Chapter 10, we reviewed a business application system to analyze the SQL 
statements used. In that application, there was a query with an SQL SELECT 
statement that executed in five minutes, when the requirement was for 
sub-second response time.

This is a situation typically faced by application developers. In this chapter we 
offer direct and specific techniques that you can employ to help you avoid issues 
such as this.

The query and the SQL statement, were analyzed and the problems were 
recognized and changed to meet the application requirement. This example is 
from an actual application system analysis, where it took the application analyst 
two hours to solve this problem. The following are comments about some of the 
issues encountered:

� It took two hours to solve this problem, in part because we had never seen 
this exact problem before. As it turns out, we saw this same condition weeks 
later, and were able to solve the problem in less than thirty minutes.

– While we solved this problem relatively quickly the second time we saw it. 
But, there are always new problems.

– In Chapter 10, we stated that a database administrator with six months of 
experience can performance tune a single (non-clustered, non-distributed) 
relational database server system with 500 GB of disk storage and 8 
CPUs in well under two hours. Performance tuning relational database 
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server systems is a generally well understood process and is typically well 
documented.

– The problem in the example is not one of relational database server 
system tuning, it is one of SQL statement tuning. While it takes two hours 
to tune a server, it regularly takes two hours to tune just one poorly 
performing SQL statement. In this example, there were dozens of SQL 
statements that were performing poorly. That means dozens times two 
hours.

� In our example, we needed to change the indexes on the table to solve the 
problem. Many times, however, the structures of the tables have to be 
changed to solve the problem. And, changing table structures often means 
application program code also has to change, unit test and then system tests 
have to be performed, and so on. The net result is that solving SQL statement 
tuning problems is very costly and takes a lot of time.

The techniques we describe in this chapter should better enable you to deliver 
performant SQL-based business application systems on time and at lower cost. 
They will also improve your ability to maintain previously developed SQL-based 
business application systems.
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11.1  Software development life cycle
A software development life cycle (SDLC) is defined as the methodology you 
uses to develop, support, deliver, and maintain computer applications. As a 
phrase, SDLC is logical; it defines a categorization (of physical methodologies). 
One specific (and perhaps the most common), SDLC methodology is the 
Waterfall Method. Figure 11-1 displays a Waterfall Method SDLC.

Figure 11-1   Example Waterfall method (SDLC)

While any specific representation of a Waterfall Method SDLC might display five, 
seven, or another number of phases, each representation shares these basic 
ideas:

� There are iterative steps that are performed in each phase. An error or other 
conditions can cause you to revisit, or at least partially revisit, prior phases.

� Generally, you move from:

– User discovery: Gathering the requirements of the application:

• Generally, the product of the user discovery phase is a requirements, 
costing, and staffing document of some form.

• Persons involved include business area leaders (persons who 
understand and can articulate the business goal to be achieved with 
the new system), project managers, data analysts, operating system 
administrators, network administrators, and perhaps others.
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– Data modeling: Includes both logical and physical data modelling. Here, 
we assume we are creating a business application system that sits atop a 
relational database. 

• Generally the product from this phase includes the Structured Query 
Language Data Definition Language (SQL DDL) statements that 
enable creation of the SQL tables, SQL indexes, SQL data integrity 
constraints, and all that is needed to support this application on a 
relational database server.

• Persons involved in this phase include product managers and data 
modelers.

– Coding and debugging: In this phase the application program code is 
created along with unit test, early quality assurance, and program 
documentation.

• Persons involved in this phase include the application programmers.

• The application programmers write program code in whatever 
language they choose, such as Java, Visual Basic®, C/C++, and 
COBOL. Each of these languages requires a specific programming 
language skill set, in addition to expertise in delivering useful user 
interfaces and systems.

– System test: In this phase, the unit deliverables are assembled to create 
a working system. Generally, the product of this phase is correction and 
proof.

• Persons involved in this phase include the application programmers.

– Cutover: Here the application is put into production. To support the new 
system, data is migrated from the existing system to the newly created 
one.

• After a final trial period, the application is considered completed, and 
enters the maintenance phase (not displayed).

11.1.1  Issues with the life cycle
The question discussed in this subsection is, “Are there any specific strengths or 
capabilities you can make use of when developing application that sits atop a 
relational database server?” For example, “are there any specific optimization 
best practices provided?” Or, “Is there some other opportunity that is being 
overlooked?” In addition to the phases in the execution of a Waterfall Method 
SDLC, Figure 11-1 on page 601 also depicts some commonly observed sources 
of contention. For example:

� Unit development and unit test are often performed on test or staged 
data. If unit development and unit test for example with the month end 
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summary report, are performed with 1000 records in the SQL table, when the 
production system will have millions of records, this enables performance 
issues and application errors to remain hidden until late in the development 
and delivery cycle.

� Application developers generally write their own SQL DML.

– Structured Query Language Data Manipulation Language (SQL DML) 
statements are those statements that are located throughout the body of 
the application. They lay out (define, one time only) the database. But they 
run every day, thousands of times, throughout the life of the application.

– With all of the difficulty of staying current on a given application language, 
and having skill to design and deliver capable user interfaces, and working 
with business goals and objectives, frankly we are typically satisfied if the 
application programmer is expert in their given application programming 
language. It is less likely that we will expect the application programmer to 
be an expert at reading 400 table SQL schemas than for the application 
programmer to know how to program highly performant (query optimizer 
expert) SQL DML statements or to develop multi-user SQL record 
concurrency models.

– Creation of these SQL DML statements often uncovers errors in the data 
model. With thousands of columns and dependencies, there typically are 
errors in the data model, even if only a few. Discovering these errors 
sooner avoids such activities as unit redevelopment, unit retesting, and 
system retesting.

� Final cut over to the new system is a risky procedure. 

– At this point of the software development life cycle, we are moving as 
much data into the new system as it took the existing system to acquire 
over a number of years. And, we need to perform this cutover quickly and 
without error.

– Cutover of the existing data will also typically uncover forgotten usages of 
existing fields and produce additional application requirements. 

11.1.2  Process modeling within a life cycle
Figure 11-2 on page 604 depicts a modified Waterfall Method SDLC. The 
primary objective in this modified SDLC is to leverage the natural strengths of a 

Note: Fixing any issue (such as program logic errors and performance) later in 
the software development life cycle costs measurably more time and energy to 
repair, when compared to uncovering and correcting these issues earlier in the 
software development life cycle.
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relational database server, and better manage the commonly observed 
application development life cycles issues.

Figure 11-2   Waterfall Method SDLC, optimized for SQL development

Related to Figure 11-2, consider the following:

� Immediate existing data cutover following data model.

– Immediately after the creation of the physical data model, a cutover of the 
existing data is loaded into the relational database server.

– The existing data model was created at the start of this software 
development effort. The data migration scripts can be developed by 
engineers who are not on the critical path, since this work requires no 
expertise (skills) which will benefit the new system.

– Loading existing data into the new system allows for discovery of new 
application requirements. For example, receiving character data to 
numeric conversion and existing fields which were supposed to be of one 
data type, are now discovered to have new meaning and use.

– Successful loading of the existing data serves as one validation of the 
newly created data model.

– This procedure also allow for early measurement of the difficulty of 
performing the migration, an event most persons only become intimately 
familiar with when they actually perform the (final) cut over.

Note: Besides careful study and engineering, how does your current 
SDLC truly verify the accuracy and performant nature of the data 
model?
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– All development is done on production-sized and actual data. This 
condition increases the accuracy and likelihood of performant unit and 
system deliverables.

� Create a process model.

– The data modeling team gathers great expertise with the business rules 
and objectives as they design and deliver their data model. If the modelers 
truly understand the business, a requirement for accurate data modeling, 
then they understand every business process and every state that records 
occupy as data moves through the application (and data model).

– What we are doing here is leveraging the already existing expertise the 
data modelers have, and producing a labor savings.

– The final product of the process model is a set of application programming 
interfaces (API). In effect, every SQL data manipulation language (DML) 
statement that is expected to be run against (supported by) this data 
model is produced here.

– If an 18 person development team has two data modelers, 10 application 
developers, and assorted other persons, we move one of the application 
developers over to the data modeling side. This resource will author every 
SQL DML that the application system is expected to run.

– Figure 11-3 on page 606 displays the Model-View-Controller (MVC) 
design pattern. MVC came into public prominence in 1995.

– Today, MVC is the industry de facto application development design 
pattern. In short, MVC calls for a separation of the application 
programming for the (data) model, view (the user interface), and controller 
(the business logic).

– A programmer with special skills creates the process model (the SQL 
API). These skills include query optimizer and SQL statement tunings, 
SQL concurrency models and programming, enterprise-wide SQL error 
recovery, and others.
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Figure 11-3   Model-View-Controller (MVC) with SQL API

� Execute an early performance trial.

– SQL has a unique capability. Running the SQL SELECT statement for the 
previously mentioned month end summary report effectively models the 
performance load of that entire program. Most of that program load is the 
processing of the relational database SQL statements. Whether the output 
uses a given font or font size, paginates in some specific manner, or 
similar, does little to the performance load. It is the SQL data manipulation 
language statements that form 90% or more of the system load.

– Execute the SQL API routines with the anticipated frequency, concurrency 
and spread. Model for the expected number of users on average, at peak 
load, and with consideration for future system growth.

– This operation allows us to determine months before final delivery if this 
system will perform adequately when finished.

– If the system does not perform adequately, take appropriate action now. 
This may entail adjusting the data model, changing the design of data 
loads and summations, individual SQL statement tuning and more.

The point is, we can make these changes now with little or no cost, 
because few dependencies exist. No application program code has been 
authored, no user documentation has been written, and we are still weeks 
or months from delivery.
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Following the process model, with its performance trial, all unit and system 
development and testing is done on real data and at the expected volume. The 
application programmers are given defined points to interact with the relational 
database server. The application programmers are not expected to know SQL, 
and certainly not how to create and model highly performant SQL. And finally, 
the data model can be code frozen, which is always important as changes to the 
data model during unit and system test is one of the most costly changes that 
can occur.

11.2  Artifacts created from a process model
To this point, all attention has been given to application development. The 
artifacts created as part of a process model benefit not only development, they 
also greatly aid the maintenance phase of an SDLC.

The SQL API is that set of routines that run inside a given application, and 
execute (generally, SQL DML) statements against the relational database 
server. The SQL API contains a number of function calls to perform tasks such 
as run month end summary report, and load new location dimension data. In a 
400 table data model, you might have 2000 or more distinct operations that need 
to operate against that data model. 

If creation of the SQL API is not done as part of a distinct effort, then the SQL API 
is created by every application programmer on the project, and the functions of 
the SQL API are scattered throughout the entire (tens of thousands of lines of) 
application program code.

Note: It is at this point, months before delivery, that we know the system will 
perform in a given manner, either meeting expectations (needs) or not. We 
can then proceed to alter the data model or system design, at little or no 
additional cost. Successful execution of the process model is final validation of 
the accuracy and performant nature of the data model.

Note: The SQL API is being created. The question is, do we organize this 
work as a distinct delivery within the entire application development effort? 
And, do we use a specific (human) resource with specialized skills to create 
this strategic deliverable?
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11.2.1  Create the SQL API
After the creation of the physical data model, we recommend you load the 
existing system data into the database server. The SQL API is then created by 
the data modelers, who have knowledge of the requirements of the application, 
and one additional (human) resource. This new resource, and the data modelers 
have skills that include:

� Knowledge of the data model, and the design of those SQL DML statements 
that need to run against this data model. These SQL DML statements, along 
with the anticipated frequency, concurrency, and spread that these 
statements will run in production, form the logical process model. If the data 
modelers do not already know every entity attribute and every program state 
that each entity goes through in support of the application, then they could not 
have modeled that application accurately. Creating the logical process model 
is a record of information the data modelers already have.

� Ability to create the Model portion of Model-View-Controller, and the ability to 
create functions in the application programming language of choice, one for 
each single or set of SQL DML routines above. This is a skill set that is 
outside of the normal data modeler world, and why a new resource is 
included in this activity. These program code artifacts form the physical 
process model, or referred to more simply as the SQL API.

� Knowledge of that information provided in Chapter 10. This group of 
engineers know how to tune SQL statements and work with the query 
optimizer.

� Knowledge about executing a performance trial against the relational 
database server of choice. Here we run the functions within the SQL API. 
There is relational database server tuning, SQL statement tuning, and other 
work performed here.

� This team authors the SQL API, and executes a performance trial with the 
elements of the SQL API with the anticipated frequency, concurrency, and 
spread that those statements are expected to run once the application is put 
into production. Inadequacies in performance may affect the data model 
(including column definitions, table relationships, index plans, and others), the 
application program code syntax, and every other tuning topic covered thus 
far.

Note: There is not an industry standard name for the (human) resource 
who can write SQL DML and SQL API in an application language, work 
with the query optimizer in-depth, and demonstrate all of these skills. 
However, it can be a team of persons. If we gave a name to this single 
resource, it would be a name such as an Enterprise Data Architect.
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11.2.2  Record query plan documents
For each function in the SQL API the query optimizer query plan is recorded, as 
well as the various execution times for a given function such as peak 
performance time, best, second best, worst, and average.

This performance trial is automated via whatever technology is available, such 
as a load trial tool or shell(C) scripts. As an automated process, this test can be 
repeated and in a controlled environment. One of these automated test profiles 
should be non-intrusive from a load perspective, allowing it to run on a 
production system. We can then run these tests weeks or months after the 
system has gone into production as part of our available maintenance and test 
routines. If an user complains that a given routine now takes two hours to run 
when it used to take 15 minutes, we have greater options to consider. We have 
baselines on which to compare this claim, and tools to authenticate and correct 
the condition. Figure 11-4 depicts a coarse data model of the information 
managed in this activity.

Figure 11-4   Coarse model of data managed in this activity

From Figure 11-4, consider the following:

– The data model proper produces SQL tables. Generally, an SQL index 
specifies a single or set of columns from one SQL table. Some relational 
database vendors support multi-table SQL indexes.

– Since the normal update and maintenance of indexes have costs, each 
index is validated (known to exist) for a given purpose. The purposes 
include support of primary key or unique data integrity constraint, foreign 
key constraints, and then support for a given SQL API statement (routine, 
function). A given SQL API function may require use of zero or more SQL 
indexes.
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– Each SQL API function is associated with a single or set of query 
optimizer query plans. These various plans for each SQL API function 
may be recorded as best case or acceptable case, or with given run-time 
settings.

– Performance trials are also recorded, which have a grouping of SQL API 
functions which are run (with a frequency, concurrency, and spread). At 
this level too, we observe query statistics (times, resource consumed), 
and query plans, as these may vary under load and other variables.

11.3  Example of process modeling
Example 11-1 displays a sample data model. This sample SQL data definition 
language code is referenced throughout the remainder of this section.

Example 11-1   Data model example 

create table cust_calls
   (
   customer_num            integer,
   call_dtime              datetime year to minute,
   user_id                 char(32) default user,
   call_code               char(1),
   call_descr              char(240),
   res_dtime               datetime year to minute,
   res_descr               char(240),
      --
   primary key (customer_num, call_dtime),
   foreign key (customer_num)
      references customer (customer_num),
   foreign key (call_code)
      references call_type (call_code)
   );

create table catalog
   (
   catalog_num              serial(10001),
   stock_num                smallint not null,
   manu_code                char(3) not null,
   cat_descr                text,
   cat_picture              byte,
   cat_advert               varchar(255, 65),
      --
   primary key (catalog_num),
   foreign key (stock_num, manu_code)
      references stock constraint aa
610 Dimensional Modeling: In a Business Intelligence Environment



   );

create table customer
   (
   customer_num            serial(101),
   fname                   char(15),
   lname                   char(15),
   company                 char(20),
   address1                char(20),
   address2                char(20),
   city                    char(15),
   state                   char(2),
   zipcode                 char(5),
   phone                   char(18),
      --
   primary key (customer_num)
   );
create index zip_ix on customer (zipcode);

create table items
   (
   item_num                smallint,
   order_num               integer,
   stock_num               smallint not null,
   manu_code               char(3) not null,
   quantity                smallint check (quantity >= 1),
   total_price             money(8),
      --
   primary key (item_num, order_num),
   foreign key (order_num)
      references orders (order_num),
   foreign key (stock_num, manu_code)
      references stock (stock_num, manu_code)
   );

create table manufact
   (
   manu_code               char(3),
   manu_name               char(15),
   lead_time               interval day(3) to day,
      --
   primary key (manu_code)
   );

create table orders
   (
   order_num               serial(1001),
   order_date              date,
   customer_num            integer not null,
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   ship_instruct           char(40),
   backlog                 char(1),
   po_num                  char(10),
   ship_date               date,
   ship_weight             decimal(8,2),
   ship_charge             money(6),
   paid_date               date,
      --
   primary key (order_num),
   foreign key (customer_num) references customer (customer_num)
   );

create procedure read_address  (lastname char(15))
   returning char(15) as pfname, char(15) as plname,
      char(20) as paddress1, char(15) as pcity,
      char(2)  as pstate, char(5) as pzipcode;

   define p_fname, p_city char(15);
   define p_add char(20);
   define p_state char(2);
   define p_zip char(5); 

   select fname,  address1, city, state, zipcode
      into p_fname,  p_add, p_city, p_state, p_zip
      from customer
      where lname = lastname;

   return p_fname, lastname, p_add, p_city, p_state, p_zip;
end procedure;

create table state
   (
   code                    char(2),
   sname                   char(15),
      --
   primary key (code)       
   );

create table stock
   (
   stock_num               smallint,
   manu_code               char(3),
   description             char(15),
   unit_price              money(6),
   unit                    char(4),
   unit_descr              char(15),
      --
   primary key (stock_num, manu_code),
   foreign key (manu_code) references manufact
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   );

create table sports
   (
   catalog_no              serial unique,
   stock_no                smallint,
   mfg_code                char(5),
   mfg_name                char(20),
   phone                   char(18),
   descript                varchar(255)
   );

create table call_type
   (
   call_code               char(1),
   code_descr              char(30),
      --
   primary key (call_code)
   );

create table catalog
   (
   catalog_num             serial(10001),
   stock_num               smallint not null,
   manu_code               char(3) not null,
   cat_descr               text,
   cat_picture             byte,
   cat_advert              varchar(255, 65),
      --
   primary key (catalog_num),
   foreign key (stock_num, manu_code)
      references stock constraint aa
   );

CREATE TABLE msgs
   (
   lang                    char(32),
   number                  integer,
   message                 nchar(255)
   );

SET NO COLLATION;

CREATE INDEX idxmsgs_enus on msgs (message);

SET COLLATION ‘fr_fr.8859-1’;   -- Create an index using fr_fr.8859-1.

CREATE INDEX idxmsgs_frfr on msgs (message);
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SET NO COLLATION;

create table log_record
   (
   item_num    smallint,
   ord_num      integer,
   username     character(32),
   update_time  datetime year to minute,
   old_qty      smallint,
   new_qty      smallint
   );
 
create trigger upqty_i
   update of quantity on items
      referencing old as pre_upd
      new as post_upd
   for each row
      (
      insert into log_record
         values (pre_upd.item_num, pre_upd.order_num, user, current,
         pre_upd.quantity, post_upd.quantity)
      );

create view custview (firstname, lastname, company, city)
    as
    select fname, lname, company, city
    from customer
    where city = ‘Redwood City’
    with check option;

create view someorders (custnum,ocustnum,newprice)
   as 
   select orders.order_num,items.order_num,items.total_price*1.5
   from orders, items
   where orders.order_num = items.order_num
   and items.total_price > 100.00;

11.3.1  Explanation of the process example
With regards to Example 11-1 on page 610, refer to the following:

� This data model contains:

– Thirteen SQL tables.

– Two SQL views. The SQL view Custview has a new integrity constraint 
built within it (a filter constraint) but references only one table. The SQL 
view Someorders joins two tables and has a single filter within it.
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– One SQL stored procedure, which does a single table read with a filter.

– One SQL trigger. One SQL update of Items. Quantity, a new record, is 
SQL inserted into another SQL table.

– Ten SQL primary keys, and eight SQL foreign keys.

– There are three additional (non-primary key, non-foreign key) indexes 
which are made, and they are Customer.Zipcode, and two on 
Msgs.Message.

� The two indexes on Msgs.Message are present to demonstrate indexes on 
varying language sets. As indexes on a 255 multi-byte column in a 291 total 
byte record length table, these indexes will surely be removed (again, these 
are present for demonstration purposes only).

� Additionally, we will not bother to cost the need for the primary key and 
foreign key indexes since their use (presence) is more feature functionality 
than pure support for query processing.

Example 11-1 on page 610 provides us the product of our logical and/or physical 
data model. At some point before, during, or after the creation of the data model, 
we considered the concept of security and roles. For example:

� During user discovery (phase one of the Waterfall Method SDLC), we may 
have discovered that there were two categorizations of users accessing this 
system; operators and senior operators. Operators are given certain SQL 
permissions (such as SELECT and UPDATE) on given tables and columns, 
and so are senior operators (presumably with more permissions).

� From the perspective of the defined user roles, we also document the 
expected use of the system:

– An operator is found to execute, for example, SQL-SELECT-001, then 
002, then 003, in sequence, at least 22 times per hour, with a think time 
(pause) of five seconds per iteration. 

– The senior operator is also defined to follow given operations and 
sequences.

– Acceptable service levels (timings) are determined for all of the above.

� The creation of this package of application definition, knowledge, and 
requirements forms the logical process model.

11.4  An SQL DML example
Also from the demonstration database (the source of the SQL DDL in 
Example 11-1 on page 610), we capture a number of SQL DMLs. These are 
shown in Example 11-2 on page 616.
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Example 11-2   A contributor to the logical process model

0000 
0001 --  This file has been edited for clarity.
0002 
0003 delete from stock 
0004 where stock_num = 102;
0005 
0006 insert into sports
0007    values (0,18,’PARKR’, ‘Parker Products’, ‘503-555-1212’,
0008    ‘Heavy-weight cotton canvas gi, designed for aikido or
0009    judo but suitable for karate. Quilted top with side ties,
0010    drawstring waist on pants. White with white belt. Pre-washed
0011    for minimum shrinkage. Sizes 3-6.’);
0012 
0013 select                        
0014    max (ship_charge),
0015    min (ship_charge)
0016 from orders;
0017 
0018 select
0019    o.order_num,
0020    sum (i.total_price) price,
0021    paid_date - order_date span
0022 from orders o, items i
0023 where o.order_date > ‘01/01/89’
0024    and o.customer_num > 110
0025    and o.order_num = i.order_num
0026 group by 1, 3
0027 having count (*) < 5
0028 order by 3
0029 into temp temptab1;
0030 
0031 SELECT message
0032 FROM msgs
0033 WHERE lang = ‘en_us’
0034 ORDER BY message;
0035 
0036 select
0037    order_num,
0038    count(*) number,
0039    avg (total_price) average
0040 from items
0041 group by order_num
0042 having count(*) > 2;
0043 
0044 select
0045    c.customer_num, c.lname, c.company, 
0046    c.phone, u.call_dtime, u.call_descr
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0047 from customer c, cust_calls u
0048 where c.customer_num = u.customer_num
0049 order by 1;
0050 
0051 select
0052    c.customer_num, c.lname, c.company, 
0053    c.phone, u.call_dtime, u.call_descr
0054 from customer c, outer cust_calls u
0055 where c.customer_num = u.customer_num
0056 order by 1;
0057 
0058 select 
0059    c.customer_num, c.lname, o.order_num, 
0060    i.stock_num, i.manu_code, i.quantity
0061 from customer c, outer (orders o, items i)
0062 where c.customer_num = o.customer_num
0063    and o.order_num = i.order_num
0064    and manu_code IN (‘KAR’, ‘SHM’)
0065 order by lname;
0066 
0067 select
0068    c.customer_num, lname, o.order_num, 
0069    stock_num, manu_code, quantity
0070 from customer c, outer (orders o, outer items i)
0071 where c.customer_num = o.customer_num
0072    and o.order_num = i.order_num
0073    and manu_code IN (‘KAR’, ‘SHM’)
0074 order by lname;
0075 
0076 select
0077    c.customer_num, lname, o.order_num, 
0078    order_date, call_dtime
0079 from customer c, outer orders o, outer cust_calls x
0080 where c.customer_num = o.customer_num
0081    and c.customer_num = x.customer_num
0082 order by 1
0083 into temp service;
0084 
0085 select *
0086    from stock
0087 where description like ‘%bicycle%’
0088    and manu_code not like ‘PRC’
0089 order by description, manu_code;
0090 
0091 select
0092    order_num, total_price 
0093 from items a
0094 where 10 >
0095       (
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0096       select count (*) 
0097       from items b
0098       where b.total_price < a.total_price
0099       )
0100 order by total_price;
0101 
0102 select distinct stock_num, manu_code
0103    from stock
0104    where unit_price < 25.00
0105 union
0106 select stock_num, manu_code
0107    from items
0108    where quantity > 3; 
0109 
0110 update sports
0111    set phone = ‘808-555-1212’
0112 where mfg_code = ‘PARKR’;

11.4.1  Explanation of DML example
With regards to Example 11-2 on page 616, refer to the following:

� Entries such as the SQL DELETE on lines 0003-0004 are less than ideal in a 
production applications, but serve our needs here.

� Each of the distinct SQL statements in Example 11-2 on page 616 will be 
found within function calls of the given application development language, 
such as Java or Visual Basic. Following the design pattern of 
Model-View-Controller, each of these (Model component) functions will offer 
little in the way of program logic. Each will perform their given SQL statement, 
and contain the minimum amount of error processing and recovery code.

� Each of the individual SQL DML statements found inside Example 11-2 on 
page 616 will be further discussed as follows:

– Each single statement will be reviewed as though it were a member of a 
distinct SQL API function call.

– Example 11-2 on page 616 contains one SQL DELETE, one SQL 
INSERT, one SQL UPDATE, and twelve SQL SELECTs. 

Lines 003-0004, the SQL DELETE
The SQL DELETE on lines 003-0004 exist in the real world as something similar 
to:

DELETE FROM stock WHERE stock_num = ?;

And a host variable will be supplied on execution. See the following:
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� From the SQL schema in Example 11-1 on page 610, the Stock table acts as 
our inventory table, where Manufact acts like the list of valid stock providers 
(Manufacturers). We can determine this from the relationships in these two 
SQL tables, as well as from the sample SQL SELECTs in Example 11-2 on 
page 616.

� The primary key on the Stock table is based on the composite key 
(Stock_num, Manu_code).

� Since the SQL DELETE in this example references a subset of the composite 
key (the leading columns) we will be concerned about to the cardinality of this 
key value if we were performing a two table join under this relationship (see 
example in “Query optimizer by example” on page 503).

� As it stands, the filter criteria in this SQL WHERE clause is supported via an 
index, the primary key to this table.

� The resultant query plan will be reviewed to confirm use of the index, and the 
observed service level (timing) of this statement will be checked against 
necessary targets.

Lines 0006-0011, the SQL INSERT
Again, this code is taken from a sample database. The real-world SQL INSERT 
will resemble SQL closer to:

INSERT INTO sports VALUES (?, ?, ?, ?, ?, ?);

Host variables will supply the column values on execution. We check for the 
presence of SQL TRIGGERS on the event of this SQL INSERT. If SQL 
TRIGGERS cause subsequent SQL SELECTS, UPDATES, or DELETES, then 
these statements are costed. In this our actual case, no SQL TRIGGERs are in 
effect for this SQL INSERT. The observed service level (timings) of this 
statement are checked against necessary targets.

Lines 0013-0016, SQL SELECT # 1
This SQL SELECT returns two aggregate columns from a single SQL table with 
no joins or filters. Since Orders.Ship_charge is not indexed, this SQL SELECT 
will cause a sequential scan of this entire table. If a higher observed service level 
(timings) was needed for this specific statement, tuning will have to be performed 
to this database server or data model. (Does the relational database server 
provide a technology to know the maximum and minimum of this column without 
requiring an index, other?) 

If the required service level is met, then we are fine. If the service level is not met, 
then we need to measure the anticipated frequency of the execution of this 
statement, and the importance that it execute as requested. Solutions to improve 
the performance of this statement will include:
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� Indexing this column.

� Creating a materialized view or materialized query table to support this query.

� Creating SQL TRIGGERS on the SQL INSERT, UPDATE, or DELETE of this 
table and keeping these statistics as calculated values in a second, 
supporting SQL table.

� Others, as allowed for by the given relational database vendor.

Lines 0018-0029, SQL SELECT #2
This SQL SELECT reads from two SQL tables where the tables are joined and 
the Orders table has two range operand filter criteria (lines 0023 and 0024). 
There is a SQL GROUP BY to support one of the aggregate expressions, (line 
0020). Also, there is a filter on an additional aggregate expression, (line 0027).

Since Items.Order_num is indexed, as shown in Example 11-1 on page 610 (it is 
an anchored primary key contributor within Items), the table order is likely to be 
Orders then Items, with an indexed table access method on Items. The 
aggregate calculations will be expensive and timings could be reduced by 
maintaining these columns within Orders using SQL TRIGGERs. The redundant 
columns we will keep in Order include Price (the calculated order total price) and 
Item Count (the number of line items in a given order). Span will not need to be 
precalculated since its resultant value is the product of two columns on the same 
row (entity instance) from Orders.

Lines 0031-0034, SQL SELECT #3
This SQL SELECT reads from one SQL table, and has one filter criteria. From 
the SQL DDL in Example 11-1 on page 610, we see that Msgs.Lang is not 
indexed, but that the SQL ORDER BY Column Msgs.Message is. Earlier we 
commented that the index on Msgs.Message is not likely to be performant, since 
it occupies 255 of 291 bytes (column length versus total record length in the 
table).

This SQL SELECT will be processed via a sequential scan on this table to satisfy 
the filter criteria, and results will be sent to the relational database server sort 
package to satisfy the SQLORDER BY clause. If observed service levels are not 
being met, an index on Msgs.Lang will help. If Msgs.Message were a smaller 
field, then a composite index on Msgs (Lang, Message) would be ideal, since this 
single SQL index will service both the filter criteria and the SQL ORDER BY 
clause. See also pseudo by clause in 10.6.1, “Query rewrite” on page 568.

Lines 0036-0042, SQL SELECT #4
This is a very interesting SQL SELECT. In simple language, we explain these 
lines:
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� In the data model, the Orders table is the order header. That is, the columns 
within a customer order that do not repeat (Order Date, Customer Number, 
and other). The Items table serves as the Order Detail table for the Order Line 
Items.

� The SQL SELECT essentially reports on Order header conditions; the count 
of line items in the order, and the average price.

� As the SQL SELECT currently exists, there is a SQL GROUP BY on 
Items.Order_num, which is an anchored column in a foreign key. We could 
receive index support for the processing of this query, but that fact needs to 
be confirmed by reading the query plan. While there are no filters on this SQL 
SELECT, the presence of the SQL GROUP BY calls for records to be read in 
sorted fashion (therefore, desire for an index).

� If the current SQL SELECT does not meet requested service levels (timings), 
the ideal index in this table will be on Items (Order_num, Total_price), allowing 
for a key only indexed retrieval (also assuming we do not keep these 
aggregate columns in the Order header table).

� As we review this query, we can discover one other area for optimization:

– The SQL table, Items, has three indexes, that include a primary key on 
(Item_num, Order_num), foreign key on (Order_num), and foreign key on 
(Stock_num, Manu_code).

– As a column, the item number (that is the sequencing of line items within a 
customer order), is probably insignificant. “Show me all third line items on 
a multi-item customer order” is not a typical query, and probably not a 
query we need to support.

– If the primary key were made to be on (Order_num, Item_num), then the 
foreign key for (Order_num) could also be served from this one index. The 
net result is one less index on this table; always a good thing.

� As implied above, it might be better to model the item count (per order) at the 
order header level, and average (Items.Total_price) at the Items level, as a 
calculated column. All of this depends of the needs of the user application; the 
observed frequency, concurrency and spread of (SQL) statements run, and 
the requested service levels (timings).

Note: This is a very interesting SQL SELECT because it exemplifies the 
structure and cost of SQL SELECTs received when you do not process the 
model.
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Lines 0044-0049, SQL SELECT #5
This SQL SELECT returns all records from two SQL tables where the tables are 
joined. From Example 11-1 on page 610, we can see that both 
Customer.Customer_num and Cust_calls.Customer_num are indexed.

Similar to SQL SELECT #4 above, and from Example 11-1 on page 610, we see 
that Cust_calls.Customer_num could lose one index. That column is anchored in 
both a primary key and foreign key in that table, which is largely redundant.

Lines 0051-0056, SQL SELECT #6
The only difference between SQL SELECT #5 and #6 is the presence of the SQL 
OUTER keyword on line 0054. Because SQL Table Cust_calls in subservient to 
Customer, the Customer table will be processed first in SQL SELECT #6. If this 
query criteria causes less than requested service levels (timings), we might seek 
to model around this condition.

Lines 0058-0065, SQL SELECT #7
This SQL SELECT reads from three SQL tables where all tables are joined, and 
the SQL table Items has a filter, (line 0064). Customer is the dominant SQL table, 
(line 0061), while SQL Tables Orders and Items are placed in a SQL OUTER 
clause. 

From Example 11-1 on page 610, we can determine that all of the join columns 
are indexed. The filter on Items.Manu_code is not anchored via an index, and is 
not a member of the index that will be needed to perform the join into SQL table 
Items.

If requested service levels for this SQL SELECT were not being met, you might 
consider possibly removing the SQL OUTER clause, replacing it with a 
non-OUTER SQL SELECT, and then UNION ALL customers with no orders (the 
net result of the SQL OUTER clause). Also, reviewing the indexes in place on 
Items to allow for key only processing, or single index processing of both the join 
and the filter criteria.

Lines 0067-0074, SQL SELECT #8
The only difference between SQL SELECT #7 and #8 is the presence of another 
SQL OUTER clause, as shown on line 0070. The same tuning guidelines will be 
in effect as for SQL SELECT #7. That is, removal (engineering around) the SQL 
OUTER clause, and including the Items.Manu_code filter in any participating 
indexes.
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Lines 0076-0083, SQL SELECT #9
While SQL SELECT #9 references different table and join columns than SQL 
SELECT #7 and #8, the same tuning guidelines apply here as well. All of the join 
columns are supported via indexes.

Lines 0085-0089, SQL SELECT #10
This SQL SELECT reads from one SQL table with two filter criteria. Both filter 
criteria offer poor selectivity and are not likely to use indexes (negation of index, 
non-initial substring, line 0087, and negation of index, poor selectivity filter, line 
0088, the inequality).

If this were a critical query, we might need to model a Keywords type table; as in, 
the description of a given Stock unit is recognized by the keywords as recorded 
in a primary key table of symbols.

Lines 0091-0100, SQL SELECT #11
This SQL SELECT provides a correlated subquery, as shown on line 0098 and 
the reference to an outer table column, A.Total_price, inside the inner SELECT.

The query optimizer query rewrite capability could detect that the inner SQL 
SELECT can be executed once, to retrieve the effect of,

SELECT total_price, COUNT(*) FROM items GROUP BY 1;

And then join the outer SQL SELECT to that result. The correlated subquery can 
be rewritten as a join, since the cardinality of the outer to inner SQL SELECTs is 
many to one.

Note: This is the only SQL SELECT in the grouping that makes use of a 
“SELECT *”; that is, the wildcard to select all columns in the list. We want to 
remove this syntax, since adding or dropping columns from the SQL table may 
break our application program code. In effect, we will later attempt to SELECT 
10+1 columns into a list of 10 variables.

Note: This is another interesting example. An experienced engineer would 
detect that this query could be rewritten, if the query optimizer query rewrite 
capability does not. This specific example supports the argument for a 
process model versus having the application programmers author their own 
SQL DML statements.
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Lines 0102-0108, SQL SELECT #13
This is a unioned SQL SELECT. The presence of the UNION keyword, without a 
UNION ALL, will call to remove duplicates from the resultant data set. This 
condition makes the DISTINCT keyword in the first SQL SELECT redundant (not 
necessary).

Table access methods for both SQL SELECTs are sequential, since neither filter 
criteria is supported by an index.

In simple terms, this SQL SELECT seems to report the effect of; show me every 
item I have sold for fewer than $25 and of which I have more than three. If this is 
an important query, we could data model it as such.

Lines 0110-0112, the SQL UPDATE
The Sports table has no index, and the table access method for this query will be 
sequential. If a greater service level (timings) is requested, an index on 
Sports.Manu_code will work.

Results: SQL objects not used
By the review of the SQL API above, we see that the two SQL VIEWS are 
currently unused, and the only additional index, that on Customer.Zipcode, is 
also unused. The index, at least, could be removed since maintaining it adds 
cost to the application.

Based on the necessary timings of the above SQL API routines, there may have 
been a call to change the data model. This is primarily to maintain redundant or 
precalculated (expression) columns.

11.5  Conclusions
In this chapter we have discussed how you can apply the query optimization 
techniques presented in Chapter 10. The discussions are heavily oriented to 
application development, but that is the means by which we access and analyze 
the data stored in the data warehouse to feed the business intelligence 
environment.

Whether by stored application or by ad hoc query, the basic objective of business 
intelligence is to get the data out of the data warehouse, analyze it, and enable 
more informed business decisions to improve management and control of the 
business enterprise.

The base of your data structure is the data model. And to support the 
requirements of BI, we have focussed specifically on dimensional modeling. 
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However, having a data structure is just part of a solution. The key is to have a 
data structure that supports understanding and use of the data, ease of access 
for analysis, and high performance of the applications and queries.

Knowing that your data model is highly performant before ever writing any 
applications or queries is of significant value. It can enable improved client 
satisfaction by delivering highly performant queries from the initial introduction of 
the system. It can also save time and money by eliminating the need to rebuild 
poorly designed data structures and applications. In short, it can enable you to 
do it right the first time.
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Glossary

Access Control List (ACL). The list of principals 
that have explicit permission (to publish, to 
subscribe to, and to request persistent delivery of a 
publication message) against a topic in the topic 
tree. The ACLs define the implementation of 
topic-based security.

Additive Measure. Measure of a fact that can be 
added across all dimensions.

Aggregate. Pre-calculated and pre-stored 
summaries, kept in the data warehouse to improve 
query performance

Aggregation. An attribute level transformation that 
reduces the level of detail of available data. For 
example, having a Total Quantity by Category of 
Items rather than the individual quantity of each item 
in the category.

Analytic. An application or capability that performs 
some analysis on a set of data.

Application Programming Interface. An 
interface provided by a software product that 
enables programs to request services.

Associative entity. An entity created to resolve a 
many-to-many relationship into two one-to-many 
relationships.

Asynchronous Messaging. A method of 
communication between programs in which a 
program places a message on a message queue, 
then proceeds with its own processing without 
waiting for a reply to its message. 

Attribute. A characteristic of an entity, such as a 
field in a dimension table.
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BLOB. Binary Large Object, a block of bytes of data 
(for example, the body of a message) that has no 
discernible meaning, but is treated as one solid 
entity that cannot be interpreted.

Business subject area. A particular function or 
area within an enterprise whose processes and 
activities can be described by a defined set of data 
elements.

Candidate key. One of multiple possible keys for 
an entity.

Cardinality. The number of elements in a 
mathematical set or group.

Commit. An operation that applies all the changes 
made during the current unit of recovery or unit of 
work. After the operation is complete, a new unit of 
recovery or unit of work begins.

Compensation. The ability of DB2 to process SQL 
that is not supported by a data source on the data 
from that data source. 

Composite Key. A key in a fact table that is the 
concatenation of the foreign keys in the dimension 
tables.

Computer. A device that accepts information (in 
the form of digitalized data) and manipulates it for 
some result based on a program or sequence of 
instructions on how the data is to be processed.

Configuration. The collection of brokers, their 
execution groups, the message flows and sets that 
are assigned to them, and the topics and associated 
access control specifications.

Connector. See Message processing node 
connector.
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Cube. Another term for a fact table. It can 
represent “n” dimensions, rather than just three (as 
may be implied by the name).

DDL (Data Definition Language). a SQL statement 
that creates or modifies the structure of a table or 
database. For example, CREATE TABLE, DROP 
TABLE, ALTER TABLE, CREATE DATABASE.

DML (Data Manipulation Language). An INSERT, 
UPDATE, DELETE, or SELECT SQL statement.

Data Append. A data loading technique where 
new data is added to the database leaving the 
existing data unaltered.

Data Append. A data loading technique where 
new data is added to the database leaving the 
existing data unaltered.

Data Cleansing. A process of data manipulation 
and transformation to eliminate variations and 
inconsistencies in data content. This is typically to 
improve the quality, consistency, and usability of the 
data.

Data Federation. The process of enabling data 
from multiple heterogeneous data sources to appear 
as if it is contained in a single relational database. 
Can also be referred to “distributed access”.

Data mart. An implementation of a data 
warehouse, typically with a smaller and more tightly 
restricted scope - such as for a department, 
workgroup, or subject area. It could be independent, 
or derived from another data warehouse 
environment (dependent).

Data mart - Dependent. A data mart that is 
consistent with, and extracts its data from, a data 
warehouse.

Data mart - Independent. A data mart that is 
standalone, and does not conform with any other 
data mart or data warehouse.

Data Mining. A mode of data analysis that has a 
focus on the discovery of new information, such as 
unknown facts, data relationships, or data patterns.

Data Model. A representation of data, its definition, 
characteristics, and relationships.

Data Partition. A segment of a database that can 
be accessed and operated on independently even 
though it is part of a larger data structure.

Data Refresh. A data loading technique where all 
the data in a database is completely replaced with a 
new set of data.

Data silo. A standalone set of data in a particular 
department or organization used for analysis, but 
typically not shared with other departments or 
organizations in the enterprise.

Data Warehouse. A specialized data environment 
developed, structured, shared, and used specifically 
for decision support and informational (analytic) 
applications. It is subject oriented rather than 
application oriented, and is integrated, non-volatile, 
and time variant.

Database Instance. A specific independent 
implementation of a DBMS in a specific 
environment. For example, there might be an 
independent DB2 DBMS implementation on a 
Linux® server in Boston supporting the Eastern 
offices, and another separate and independent DB2 
DBMS on the same Linux server supporting the 
western offices. They would represent two instances 
of DB2. 

Database Partition. Part of a database that 
consists of its own data, indexes, configuration files, 
and transaction logs.

DataBlades. These are program modules that 
provide extended capabilities for Informix 
databases, and are tightly integrated with the DBMS.

DB Connect. Enables connection to several 
relational database systems and the transfer of data 
from these database systems into the SAP® 
Business Information Warehouse.

Debugger. A facility on the Message Flows view in 
the Control Center that enables message flows to be 
visually debugged.
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Deploy. Make operational the configuration and 
topology of the broker domain.

Dimension. Data that further qualifies and/or 
describes a measure, such as amounts or durations.

Distributed Application In message queuing, a 
set of application programs that can each be 
connected to a different queue manager, but that 
collectively constitute a single application. 

Drill-down. Iterative analysis, exploring facts at 
more detailed levels of the dimension hierarchies.

Dynamic SQL. SQL that is interpreted during 
execution of the statement. 

Engine. A program that performs a core or 
essential function for other programs. A database 
engine performs database functions on behalf of the 
database user programs.

Enrichment. The creation of derived data. An 
attribute level transformation performed by some 
type of algorithm to create one or more new 
(derived) attributes.

Entity. A person, place, thing, or event of interest to 
the enterprise. Each entity in a data model is unique.

Extenders. These are program modules that 
provide extended capabilities for DB2, and are 
tightly integrated with DB2.

FACTS. A collection of measures, and the 
information to interpret those measures in a given 
context.

Federated data. A set of physically separate data 
structures that are logically linked together by some 
mechanism, for analysis, but which remain 
physically in place.

Federated Server. Any DB2 server where the 
WebSphere Information Integrator is installed.

Federation. Providing a unified interface to diverse 
data.

Foreign Key. An attribute or set of attributes that 
refer to the primary key of another entity.

Gateway. A means to access a heterogeneous 
data source. It can use native access or ODBC 
technology.

Grain. The fundamental atomic level of data 
represented in a fact table. As examples, typical 
grains that could be used, when considering time, 
would be day, week, month, year, and so forth.

Granularity. The level of summarization of the 
data elements. It refers to the level of detail
available in the data elements. The more detail data 
that is available, the lower the level of granularity. 
Conversely, the less detail that is available, the 
higher the level of granularity (or level of 
summarization of the data elements).

Instance. A particular realization of a computer 
process. Relative to database, the realization of a 
complete database environment. 

Java Database Connectivity. An application 
programming interface that has the same 
characteristics as ODBC but is specifically designed 
for use by Java database applications.

Java Development Kit. Software package used to 
write, compile, debug and run Java applets and 
applications.

Java Message Service. An application 
programming interface that provides Java language 
functions for handling messages.

Java Runtime Environment. A subset of the Java 
Development Kit that allows you to run Java applets 
and applications.

Key. An attribute of set of attributes that uniquely 
identifies an entity.

Materialized Query Table. A table where the 
results of a query are stored, for later reuse. 

Measure. A data item that measures the 
performance or behavior of business processes.
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Message domain. The value that determines how 
the message is interpreted (parsed).

Message flow. A directed graph that represents 
the set of activities performed on a message or event 
as it passes through a broker. A message flow 
consists of a set of message processing nodes and 
message processing connectors.

Message parser. A program that interprets the bit 
stream of an incoming message and creates an 
internal representation of the message in a tree 
structure. A parser is also responsible to generate a 
bit stream for an outgoing message from the internal 
representation.

Meta Data. Typically called data (or information) 
about data. It describes or defines data elements.

MOLAP. Multidimensional OLAP. Can be called 
MD-OLAP. It is OLAP that uses a multidimensional 
database as the underlying data structure.

Multidimensional analysis. Analysis of data 
along several dimensions. For example, analyzing 
revenue by product, store, and date.

Multi-Tasking. Operating system capability which 
allows multiple tasks to run concurrently, taking turns 
using the resources of the computer. 

Multi-Threading. Operating system capability that 
enables multiple concurrent users to use the same 
program. This saves the overhead of initiating the 
program multiple times.

Nickname. An identifier that is used to reference 
the object located at the data source that you want 
to access. 

Node Group. Group of one or more database 
partitions.

Node. See Message processing node and Plug-in 
node.

Non-Additive Measure. Measure of a fact that 
cannot be added across any of its dimensions, such 
as a percentage.

ODS. (1) Operational data store: A relational table 
for holding clean data to load into InfoCubes, and 
can support some query activity. (2) Online Dynamic 
Server - an older name for IDS.

OLAP. OnLine Analytical Processing. 
Multidimensional data analysis, performed in real 
time. Not dependent on underlying data schema.

Open Database Connectivity. A standard 
application programming interface for accessing 
data in both relational and non-relational database 
management systems. Using this API, database 
applications can access data stored in database 
management systems on a variety of computers 
even if each database management system uses a 
different data storage format and programming 
interface. ODBC is based on the call level interface 
(CLI) specification of the X/Open SQL Access 
Group.

Optimization. The capability to enable a process 
to execute and perform in such a way as to maximize 
performance, minimize resource utilization, and 
minimize the process execution response time 
delivered to the user.

Partition. Part of a database that consists of its 
own data, indexes, configuration files, and 
transaction logs.

Pass-through. The act of passing the SQL for an 
operation directly to the data source without being 
changed by the federation server.

Pivoting. Analysis operation where user takes a 
different viewpoint of the results. For example, by 
changing the way the dimensions are arranged.

Primary Key. Field in a table record that is 
uniquely different for each record in the table.

Process. An instance of a program running in a 
computer.

Program. A specific set of ordered operations for a 
computer to perform.
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Pushdown. The act of optimizing a data operation 
by pushing the SQL down to the lowest point in the 
federated architecture where that operation can be 
executed. More simply, a pushdown operation is one 
that is executed at a remote server.

Relationship. The business rule that associates 
entities.

ROLAP. Relational OLAP. Multidimensional 
analysis using a multidimensional view of relational 
data. A relational database is used as the underlying 
data structure.

Roll-up. Iterative analysis, exploring facts at a 
higher level of summarization.

Semi-additive Measure. Measure of a fact that 
can be added across only some of its dimensions, 
such as a balance.

 Server. A computer program that provides 
services to other computer programs (and their 
users) in the same or other computers. However, the 
computer that a server program runs in is also 
frequently referred to as a server. 

Shared nothing. A data management architecture 
where nothing is shared between processes. Each 
process has its own processor, memory, and disk 
space. 

Spreadmart. A standalone, non-conforming, 
non-integrated set of data, such as a spreadsheet, 
used for analysis by a particular person, department, 
or organization.

Static SQL. SQL that has been compiled prior to 
execution. Typically provides best performance. 

Static SQL. SQL that has been compiled prior to 
execution. Typically provides best performance. 

Subject Area. A logical grouping of data by 
categories, such as customers or items.

Synchronous Messaging. A method of 
communication between programs in which a 
program places a message on a message queue 
and then waits for a reply before resuming its own 
processing.

Task. The basic unit of programming that an 
operating system controls. Also see Multi-Tasking.

Thread. The placeholder information associated 
with a single use of a program that can handle 
multiple concurrent users. Also see Multi-Threading.

Type Mapping. The mapping of a specific data 
source type to a DB2 UDB data type 

Unit of Work. A recoverable sequence of 
operations performed by an application between two 
points of consistency.

User Mapping. An association made between the 
federated server user ID and password and the data 
source (to be accessed) used ID and password.

Virtual Database. A federation of multiple 
heterogeneous relational databases.

Warehouse Catalog. A subsystem that stores and 
manages all the system meta data.

Wrapper. The means by which a data federation 
engine interacts with heterogeneous sources of 
data. Wrappers take the SQL that the federation 
engine uses and maps it to the API of the data 
source to be accessed. For example, they take DB2 
SQL and transform it to the language understood by 
the data source to be accessed.

xtree. A query-tree tool that allows you to monitor 
the query plan execution of individual queries in a 
graphical environment.
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acronyms
ACS access control system

ADK Archive Development Kit

AIX® Advanced Interactive 
eXecutive from IBM

API Application Programming 
Interface

AQR automatic query re-write

AR access register

ARM automatic restart manager

ART access register translation

ASCII American Standard Code for 
Information Interchange

AST Application Summary Table

BLOB Binary Large OBject

BW Business Information 
Warehouse (SAP)

CCMS Computing Center 
Management System

CFG Configuration

CLI Call Level Interface

CLOB Character Large OBject

CLP Command Line Processor

CORBA Common Object Request 
Broker Architecture

CPU Central Processing Unit

CS Cursor Stability

DAS DB2 Administration Server

DB Database

DB2 Database 2™

DB2 UDB DB2 Universal DataBase

DBA Database Administrator

DBM DataBase Manager

DBMS DataBase Management 
System

Abbreviations and 
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DCE Distributed Computing 
Environment

DCM Dynamic Coserver 
Management

DCOM Distributed Component 
Object Model

DDL Data Definition Language - a 
SQL statement that creates or 
modifies the structure of a 
table or database. For 
example, CREATE TABLE, 
DROP TABLE.

DES Data Encryption Standard

DIMID Dimension Identifier

DLL Dynamically Linked Library

DMDL Dimensional Modeling Design 
Life Cycle

DML Data Manipulation Language - 
an INSERT, UPDATE, 
DELETE, or SELECT SQL 
statement.

DMS Database Managed Space

DPF Data Partitioning Facility

DRDA® Distributed Relational 
Database Architecture™

DSA Dynamic Scalable 
Architecture

DSN Data Source Name

DSS Decision Support System

EAI Enterprise Application 
Integration

EAR Entity, Attribute, Relationship 
data model. Also denoted by 
E/R.

EBCDIC Extended Binary Coded 
Decimal Interchange Code

EDA Enterprise Data Architecture
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EDU Engine Dispatchable Unit

EDW Enterprise Data Warehouse

EGM Enterprise Gateway Manager

EJB™ Enterprise Java Beans

E/R Enterprise Replication

E/R Entity, Attribute, Relationship 
data model. Also denoted by 
EAR.

ERP Enterprise Resource Planning

ESE Enterprise Server Edition

ETL Extract, Transform, and Load

ETTL Extract, Transform/Transport, 
and Load

FJS Filter, then Join, then Sort

FP Fix Pack

FTP File Transfer Protocol

Gb Giga bits

GB Giga Bytes

GUI Graphical User Interface

HADR High Availability Disaster 
Recovery

HDR High availability Data 
Replication

HPL High Performance Loader

I/O Input/Output

IBM International Business 
Machines Corporation

ID Identifier

IDE Integrated Development 
Environment

IDS Informix Dynamic Server

II Information Integrator

IMG Integrated Implementation 
Guide (for SAP)

IMS™ Information Management 
System

ISAM Indexed Sequential Access 
Method

ISM Informix Storage Manager

ISV Independent Software Vendor

IT Information Technology

ITR Internal Throughput Rate

ITSO International Technical 
Support Organization

IX Index

J2EE Java 2 Platform Enterprise 
Edition

JAR Java Archive

JDBC™ Java DataBase Connectivity

JDK™ Java Development Kit

JE Java Edition

JMS Java Message Service

JRE™ Java Runtime Environment

JVM™ Java Virtual Machine

KB Kilobyte (1024 bytes)

LDAP Lightweight Directory Access 
Protocol

LPAR Logical Partition

LV Logical Volume

Mb Mega bits

MB Mega Bytes

MDC Multidimensional Clustering

MPP Massively Parallel Processing

MQI Message Queuing Interface

MQT Materialized Query Table

MRM Message Repository 
Manager

MTK DB2 Migration ToolKit for 
Informix

NPI Non-Partitioning Index

ODBC Open DataBase Connectivity

ODS Operational Data Store 

OLAP OnLine Analytical Processing

OLE Object Linking and 
Embedding
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OLTP OnLine Transaction 
Processing

ORDBMS Object Relational DataBase 
Management System

OS Operating System

O/S Operating System

PDS Partitioned Data Set

PIB Parallel Index Build

PSA Persistent Staging Area

RBA Relative Byte Address

RBW Red Brick™ Warehouse

RDBMS Relational DataBase 
Management System

RID Record Identifier

RR Repeatable Read

RS Read Stability

SCB Session Control Block

SDK Software Developers Kit

SDLC Software Development Life 
Cycle

SID Surrogage Identifier

SMIT Systems Management 
Interface Tool

SMP Symmetric MultiProcessing

SMS System Managed Space

SOA Service Oriented Architecture

SOAP Simple Object Access 
Protocol

SPL Stored Procedure Language

SQL Structured Query

TCB Thread Control Block

TMU Table Management Utility

TS Tablespace

UDB Universal DataBase

UDF User Defined Function

UDR User Defined Routine

URL Uniform Resource Locator

VG Volume Group (Raid disk 
terminology).

VLDB Very Large DataBase

VP Virtual Processor

VSAM Virtual Sequential Access 
Method

VTI Virtual Table Interface

WSDL Web Services Definition 
Language

WWW World Wide Web

XBSA X-Open Backup and Restore 
APIs

XML eXtensible Markup Language 

XPS Informix eXtended Parallel 
Server
 Abbreviations and acronyms 635
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Numerics
3NF   1, 62, 79, 142, 334, 342

also see third normal form
3NF data warehouse   81
5W-1H rule   105

A
accumulating fact table   233
additive   53
Additive fact   175
aggregate expression   562
aggregate navigation   188, 422
aggregate navigator   188
aggregates   184
aggregation approaches   185
alerts   38
analysis   5
analytic applications   xiii, 35, 38, 72
analytic structures   42
analytical area   69, 73
Apache SOAP server   28
architecting a data mart   41
arithmetic modulus operand   538
artifacts   607
Ascential Software   482
ASCII   2
atomic   70
atomic dimensional model   342
atomic grain   228–229
atomic level data   184
attributes   51, 70, 146

adding new   331
auto-index   542
Auto-index (table) access   540

B
balanced hierarchy   154, 250

how to implement   250
balanced time hierarchy   250
band range value   272
BI   2, 7, 23, 35

also see business intelligence
© Copyright IBM Corp. 2006. All rights reserved.
Bitmap index   191, 538
boolean data type   461
bounded box index   539
BPM   31–32, 35, 99
BPM - also see business performance management
BPM framework   33
bridge table   291, 397
Brio   98
B-Tree index   191
B-tree index   538
B-tree+ index   523
Business analysis   29
business intelligence   xiii, 4, 16, 21, 32, 47

also see BI   xiii
Business measurements   30–31
business meta data   451
Business Objects Universe   496
business performance management   5, 22, 31

also see BPM
functional components   33

business process analysis
summary   120

business process assessment factors   108
business process management   99
business processes   xiii, 226
business requirements

changing   332
business rules   35, 456
Business users   84
BusinessObjects   98
Business-wide enterprise data warehouse   106

C
calculated fact   175
cardinality   56, 70, 165, 192, 526, 540, 567
Casual users   84
change handling strategy   262
check constraints   580
chunk   595
classification of users   83
Clickstream analysis   29
closed-loop analytics   36
closed-loop processing   39
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clustered index   191, 194
code reuse   25
Cognos Impromptu   98
Cognos Impromptu Catalog   496
co-located join   586
command parser   502, 572, 579–580
Common Object Request Broker Architecture   26

also see CORBA
communication buffer   581
composite primary key   177–178, 309
concatenated index   520, 530, 532, 575
concatenated primary key   177, 308
conceptual design   69
conditional join   552
conformed dimensions   61, 112, 126, 135, 144, 437
conformed facts   61, 112, 126, 174, 414
container   595
content denormalization   468
continuous loading   37
CORBA   26

also see Common Object Request Broker Archi-
tecture

correlated subquery   574, 588
cost based query optimizer   18, 551
CRM system   337
cube meta data   189
Customer Relationship Management   337
Customer Service   29

D
dashboard   35, 82, 94, 98
data analysis techniques   77
data analysis tools   83
data architecture   xiii
data cubes   82
Data Definition Language   67, 602

also see DDL
Data Dictionary   481
data distributions   591
data domains   458
data driven   101
data federation   xiii
data lineage   486
Data Manipulation Language   603
data mart   5, 34, 40
data mart consolidation   5, 22, 42, 106
data mining   29, 100
data model   xiii, 4

data modeling life cycle   47, 66
data modeling techniques   47
data object naming   462
data partitioning   195
data standards   457
data warehouse   4–5, 34, 47, 341

architectural approaches   57
data warehouse architecture   41
data warehouse keys   459
data warehousing   xiii
DataStage   484

Content Browser   485
DataStage Manager   496
date

data type   460
dimension or fact   157

date and time dimensions   155, 214, 223, 233, 245, 
399, 435

international time zones   248
International times zones   158

date attributes   157
date dimension   156, 158
DB2 Command Center   329
DB2 Cube Views   189, 318
DB2 Explain facility   321
DB2 OLAP Server   97
DB2 optimizer   189, 323
DB2 SQL compiler   321
DB2 UDB   318, 321, 540
DCOM (Distributed Common Object Model)   26
DDL   75

also see Data Definition Language
Decision Support   13
default column constraints   580
degenerate dimension   178, 192, 241, 243, 298, 
435
degenerate dimensions   142, 144, 240
denormalization   50
denormalize   219
denormalized   55, 222
denormalized E/R models   48
denormalized tables   335
dependent data mart   40, 47, 61

architecture   65
dependent data mart architecture   65
Dependent data warehouse   106
derived fact   175
Development Life Cycle   18
dicing   88
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Digital dashboard   29
dimension

also see conformed dimensions   144
fact valule band   192
grain   135
hierarchies   249
meta data   199

dimension keys   459
dimension meta data   198
dimension table   53, 135, 146

attributes   135, 145
characteristics   55

dimensional attributes   145
dimensional data marts   82
dimensional design life cycle   17
dimensional model   15, 48, 52, 71, 142, 161

handling changes   161, 330
types   55

dimensional model design life cycle   103
also see DMDL
phases   103–104

dimensional model development   333
dimensional model life cycle   6
dimensional modeling   4, 10, 12, 16, 105
dimensions

activities for identifying   133
preliminary   131

DMDL   6, 103, 196, 206, 224, 239, 333, 351, 472
also see dimensional model design life cycle
the phases   104

dominant table   553, 566
drill-across   92
drill-down   87, 90–91
drilling   90
driveSpace   595
duplicate index   531, 558

E
E/R data model   8, 10, 12, 15

also see E/R model
E/R diagram   48, 343
E/R model   48, 62, 64, 71, 108, 114, 223, 334

also see E/R data model
converting to dimensional   173, 214
non-transaction based tables   215
transaction based tables   215

E/R modeling   1, 10, 49
advantages   51

disadvantage   52
EAR - see Entity, Attribute, Relationship
Eclipse   28
encryption key   578
Enterprise Data Architect   608
enterprise data warehouse   47, 62, 68

architecture   62
components   62

Enterprise portal   29
Enterprise Resource System   337
Enterprise users   84
entities   51
Entity Relationship Modeling - see E/R modeling
Entity, Attribute, Relationship   4

also see E/R
ETL   39, 60, 68, 72, 75, 181, 229, 454
ETL process   41
event-based fact tables   311
Explorer   495
expression operands   595
Extensible Markup Language   482

F
fact   15, 169, 297

Additive   175, 240
aggregation rules   176
also see conformed facts   174
Derived   175, 240
derived   176
Factless   175
identification activities   169
Non-additive   297
non-additive   172, 175, 240, 298
preliminary   131
Pseudo   175, 240
Semi-additive   240
semi-additive   175, 299
Textual   175, 240, 297
types   174
year-to-date   176, 240

fact table   15, 52–53, 151, 163, 172, 297
accumulating   127, 230
adding new facts   331
calculate growth   180
characteristics   53
comparison of types   127
criteria for multiple   125
event   177
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growth   179
meta data   202
multiple grains   126, 226
periodic   127, 230
size   179
transaction   126, 230
types   126, 230

fact table granularity   123
guidelines for choosing   124

fact tables
event   311

fact value band   192
factless fact table   175, 314, 317
Factors   229
fast changing dimensions   162, 270, 400

activities   162
approaches for handling   162

Federated Database   42
filter columns   559
filter correlation   591
filter selectivity   518
Finance   29
first normal form   71
floors of data   78
foreign dimension keys   179
foreign key   53, 74, 150, 162–163, 177, 191, 215, 
274, 308, 622
foreign key definitions   580
fragment elimination   512, 593
functional dependencies   71
future business requirements   230

G
garbage dimension   167, 282, 408
Geo-spatial analysis   29
getting data in   37, 39, 497
getting data out   37, 39, 498
Globally Unique Identifiers   141
grain   121, 148, 226, 229, 291, 315

characteristics   121
factors to consider   229
having multiple grains   125

grain atomicity   128, 434
grain definition

changing   331
grain definition report   199
grain definitions   122, 169–171, 178
grain identification   121

granularity   122, 130
date and time dimensions   155
fact table   123
impact on storage space   230
multiple fact tables   125
trade-offs   129

H
hash index   18, 538, 541
hash index (table) join   542
hash table join   586
heterogeneous dimension   167, 407
hierarchies   145

Balanced   154, 249
multiple   154
Ragged   154, 260
Unbalanced   154, 251

hierarchy   319
histograms   597
hot swappable dimension   168, 294, 408

implementing   294
HTML   7

also see Hyper Text Markup Language
HTTP   27
hub and spoke   59, 492
Human Resources   29
Hyper Text Markup Language   7

also see HTML
Hyperion Essbase   98

I
IBM Alfablox   97
Identify aggregates   422
Identify business process requirements   103
Identify the business process   105, 422
identify the business process

multiple grains   125
Identify the dimensions   103, 133, 199, 226

activities   133
Identify the facts   103, 202, 226, 411
Identify the grain   103, 226, 423
IIOP (see Internet Inter-ORB Protocol)
impact analysis   487
independent data mart   40, 47, 58, 63

issues   60
Independent data warehouse   106
index leaf page data   538
index maintenance   191
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index negation   18, 582
index types   190, 193

join index   193
MDC indexes   194
multidimensional indexes   194
selective index   194
virtual index   193

Index utilization guidelines   519
Indexed (table) access   538
indexed retrieval   537
indexed star schema   326
indexed table access method   514
indexing   190, 422
indexing dimension tables   192
indexing techniques - vendor specific   193
information dashboards   38

also see dashboard
Information Integration   40
information pyramid   16, 23, 77–78
information technology   1
Information visualization   29
Informix Software   7
Ingres Software   7
inner query   574
interconnected data mart   61
Internet Inter-ORB Protocol   27
intersect entity   212
IT   24
IT users   84

J
Java RMI (Remote Method Invocation)   26
Java Web Application Server   28
Java/J2EE   3
join column key   553
join cost   513
join criteria   552
junk dimension   282

K
key performance indicators   32, 38

also see KPI
key-only retrieval   514, 531
KPI

also see key performance indicators

L
left handed join   552
list of nouns   70
load trial tool   609
logical data model   69

design activity   69
logical data modeling   66
logical model

validation   70
logical process model   608

M
many-to-many relationships   211
Marketing   30
Materialized Query Tables   42, 189, 318, 573
materialized views   573
messaging systems   39
meta data   18, 25, 41, 197, 201, 204, 423, 447

cube   189
non-technical   197
techincal   197

meta data design   453
meta data directory   490
meta data history   455
meta data management   103, 196, 422
meta data management system   341
meta data model   454
meta data standards   457
meta data strategy   454
meta data types

business   451
Design   483
Operational   484
operational   453
Physical   483
reference   452
structured   452–453
technical   452
unstructured   453

MetaArchitect   493
MetaBroker   492
MetaBrokers   483
metadata

categories   491
class hierarchy   490
relationship hierarchy   490

metadata repository   455
metadata types   451
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MetaStage   482
Microsoft Excel   486
Microstrategy   98
mini-dimension table   163
mini-dimensions   162, 164, 272, 331
Model-View-Controller   605, 608, 618
Monitor   196
MQSeries queues   39
mulltistar model   55
multidimensional analysis   77, 86, 100
MultiDimensional Clustering   18, 42, 593
Multidimensional Cube Analysis   29
multidimensional structures   69, 97
multidimensional techniques   87
multi-index scan   576, 586
multilingual information   471
multiple granularities   434
multiple hierarchies   154
multi-stage back end command parser   579
multi-threaded process architecture   500
multi-user concurrency   538
multi-valued dimension   166, 289, 406

N
naming data   462

abbreviations   463
acronyms   464
general considerations   462
glossary   464
historical considerations   462

near real-time BI   39
near real-time business intelligence   36–37
negation of index   536
Negation of index, (poor) selectivity of filter   583
Negation of index, non-anchored composite key   
583
Negation of index, non-initial substring   582
nested loop (table) join   541, 544
nested loop join   514, 586
nested queries   573
non-additive fact   175, 297
non-anchored composite key   536
non-anchored key   583
non-blocking architecture   500
non-indexed star schema   326
non-key columns   438
non-outer join   556
non-pipelined sort   570, 587

non-technical meta data   197
non-unique index   190
Normal Forms   15
normalization   50, 72
normalization of dimension tables   279
normalization of entities   69
normalized database   342
normalized E/R models   48–49
Not Applicable scenario   150, 158
Not Applicable scenario records   136
noun list   70
null keys   150

O
Object Management Group   482
Object Request Broker   27
ODS. See Operational Data Store
OLAP   42, 420, 481

also see Online Analytical Processsing
OLAP databases   34
OLTP   2, 6–7, 16, 24, 49–50, 106, 241

also see on-line transaction processing
OnLine Analytical Processing   42

also see OLAP
on-line transaction processing   1, 6

also see OLTP
operational data   79
Operational Data Store   5, 42
operational meta data   453
Operations   29
optimizer directives   511
Oracle Software   7
outer join   552

P
Parallel ETL Engines   39
parallel operations   512
Parser   501
partial index negation   583
partitioning   195, 422
performance design and tuning   75
performance metrics   32
periodic fact table   232
physical data modeling   67, 73
Physical design considerations   103

aggregations   184
meta data   205

physical model
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design factors   74
physical modeling

activities   74
pipelined parallel architecture   500
pipelined sort   570, 587
Pivoting   87, 90
Platinum ERwin   484
Power users   84
pre-aggregated data   321
predicate inference   591
pre-fetching   537
preliminary dimensional schema   138
preliminary dimensions   410
preliminary facts   132, 171, 410, 412
primary key   70, 74, 135, 139, 177, 191, 212, 262, 
308, 622

composite   177
concatenated   177
uniqueness   179

primary key definitions   580
primary key resolution   72
primary query rules   551
process management   xiii
Process MetaBroker   494
project plan   9
pseudo fact   175, 315
pseudo order-by clause   565
Publish and Subscribe   493
push down semi-hash join   546

Q
QualityStage   492
quantile   592
query   5
Query analysis and reporting   85
Query and reporting   29
query and reporting applications   97
query and reporting tools   94
Query Builder   488
Query definition   85
query optimizer   18, 497, 548, 568, 575, 605

directives   511
query optimizer directives   18, 536, 584
query optimizer hints   534
query optimizer histograms   597
query optimizer statistics   541
query plan   515
query processor   501, 503

query rewrite   18, 548, 568, 575
query rewrite directive   588

R
ragged hierarchy   154, 260
Rational Data Architect   333
read ahead scans   537–538
real-time   36
real-time business intelligence   5, 22, 40
real-time information   xiii
Recover   196
recursive loop   544
Redbook Vineyard   336, 400

business process description   344
the project   334

Redbooks Web site   638
Contact us   xvi

redundant join   577
reference meta data   452, 467
referential integrity   136, 150
relational database

administrative interfaces   508
character based interface   508
fragment elimination   512
indexed access   514
join cost   513
key-only retrieval   514
nested loop join   514
outer cartesian product   510
page corners   508
parallel operations   512
sequential scan   514
table join methods   514
threads   512

relational database tuning   505
example activities   505

relationships   51
remote path (table) access   539
Remote Procedure Call   27
Reorganize   196
repeating groups   71
Replication   39
reporting   5
reporting environment   82
reporting tool architectures   83
requirements

changing   332
plan for the future   230
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requirements analysis   118
entities and measures   118

requirements gathering   116
maintaining history   118
questions   117

requirements gathering approach   113
source-driven   114
user-driven   115

requirements gathering report   199
Restructure   196
right handed join   552
right time data delivery   79
RMI - Remote Method Invocation   27
ROLAP   92
role-playing   155
role-playing dimension   166, 285, 406
roll-down   93
roll-up   87, 93, 246
ROWID (table) access   540
RPC (also see Remote Procedure Call)
R-tree index   539
rules based query optimizer   551

S
scorecard   98
SDLC   601
second normal form   71
semantic data integrity constraints   580
semi-additive   53
semi-additive fact   175, 299, 305
semi-join   574
Sequential (table) access   538
sequential scan disk access method   514
sequential scans   537
Sequentially scan   196
service oriented architecture   6

- also see SOA
shared aggregation   577
Sherpa & Sid Corporation   426
Simple Object Access Protocol   26
Slice and Dice   87, 327
Slicing   88
slowly changing dimensions   159, 261, 400

activities   161
types   159

snowflake model   55
snowflake schema   280
snowflaked dimension table   281

snowflaking   164, 274, 278, 404
SOA   6

also see service oriented architecture
SOAP (also see Simple Object Access Protocol)
software development life cycle   8, 601

also see SDLC
software server components   499

disk
memory
process

sort merge (table) join   542, 544–545
sort order   543
source systems   62, 65, 79, 241
source systems query   80
splitting a tall table   594
spreadsheet   94, 97
SQL   5, 7

also see Structured Query Language
SQL API   607
SQL CURSOR   580
SQL error recovery   605
SQL query optimizer   18

also see query optimizer
SQL statement tuning   505, 600
SQL VIEWS   573
staging area   62, 65
standard join   556
star index   539, 570
star model   55
star schema   52, 147, 174, 189, 229, 280, 314, 329
statement cache   580
stored procedures   95
structured meta data   452–453
Structured Query Language   5

also see SQL
subordinate table   553
summarized data   81
summary area   68, 73, 342
summary tables   42, 318
surrogate keys   135, 139–140, 213, 219, 436

reasons for use   139
system of record   68, 340, 342
system test phase   9

T
table access methods   502, 512
table join methods   18, 514
table join order   18
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table partitioning   18, 195, 594
tactical business intelligence   35
tall table   594
technical meta data   197, 452
temporal data   10
temporary index   537
textual fact   175
third normal form   1, 49–50, 71

also see 3NF
threshold values   38
time   159

a dimension not a fact   159
a dimension or a fact   245
as a fact   159
data type   461
in dimensional modeling   245

time dimension   158
topped query   575
transaction fact table   231
transitive dependencies   71, 548, 566, 571
triggers   580
Type 1 slowly changing dimension   160
Type 2 slowly changing dimension   160
Type 3 slowly changing dimension   160
Type-1 slowly changing dimension   262
Type-2 slowly changing dimension   264
Type-3 slowly changing dimension   267
types of dimensional models   55

U
UDDI   26

also see Universal Desctiption Discovery and In-
tegration

UDDI registry   28
unbalanced hierarchy   154, 251
UNION ALL   576
UNION ALL SQL SELECT   576
UNIONED SELECT   576
unique index   190, 531, 558
Universal Description, Discovery, and Integration 
(see UDDI)
unstructured meta data   453
user classification   83

V
value chain   33
Verify the model   103

business requirements   181

handling history   182
volume   595

W
W3C (also see World Wide Web Consortium)
Waterfall Method   8, 601
Web services   25, 28, 40

also see XML Web services
architecture   27

Web Services Description Language   26
WebSphere

queues   39
WebSphere Application Server   28
WebSphere Information Integrator   34, 189
WebSphere MQ   27
WebSphere Studio   28
weighting factor   290
World Wide Web   16, 25
World Wide Web Consortium   26
WSDL   27

also see Web Service Description Language

X
XML   27
XML Web services   25

also see Web services

Y
year-to-date facts   420
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dimensional modeling techniques and technology, 
specifically focused on business intelligence and data 
warehousing. It is to help the reader understand how to 
design, maintain, and use a dimensional model for data 
warehousing that can provide the data access and 
performance required for business intelligence. Business 
intelligence is comprised of a data warehousing 
infrastructure, and a query, analysis, and reporting, 
environment. Here we focus on the data warehousing 
infrastructure. But only a specific element of it, the 
dimensional model, or, more precisely, the topic of 
dimensional modeling and its impact on the business and 
business applications. The objective is not to provide a 
treatise on dimensional modeling techniques, but to focus at 
a more practical level. There is technical content for designing 
and maintaining such an environment, but also business 
content. For example, we use case studies to demonstrate 
how dimensional modeling can impact the business 
intelligence requirements. In addition, we provide a detailed 
discussion on the query aspects of BI and data modeling. For 
example, we discuss query optimization and how to evalueate 
the performance of the data model prior to implementation. 
You need a solid base for your data warehousing 
infrastructure . . . . a solid dimensional model.
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